Answer
Verified
493.5k+ views
Hint: Use the formula for the nth term of an A.P which is given by . Here, put the value of ${{T}_{n}}=0,a=84,d=-4$ to get the value of n. $d$ can be found by subtracting the 2nd term from the first term.
Complete step-by-step Solution:
We have been given an A.P. in the question whose first term is 84 and the nth term is 0.
Before proceeding with the question we must know that A.P is an arithmetic progression where each term can be found by adding a constant number which is called a common difference.
Now we know that the general form of an arithmetic progression is
$a,a+d,a+2d,a+3d.......$
where a is the first term and d is the common difference.
Now, we know that the nth term of the A.P. is given by the formula ${{T}_{n}}=a+\left( n-1 \right)d$, where ${{T}_{n}}$ is the nth term of the A.P.,$a$ is the first term, $n$ is the number of terms and $d$ is the common difference.
The common difference can be found using the below formula.
Common difference = the next term - the preceding term
The A.P. given in the question is $84,80,76....$.we can write the data from A.P. as
First term a = 84,
The nth term ${{T}_{n}}=0$
Common difference $\Rightarrow d=80-84=-4$
We have to find the value of n.
Therefore, we can use the formula ${{T}_{n}}=a+\left( n-1 \right)d$.
Substituting the value of $a,{{T}_{n}},d$ in the above formula, we get:
$\Rightarrow 0=84+\left( n-1 \right)(-4)$
Opening the brackets, we get
$\Rightarrow 0=84-4n+4$
Adding the constant terms and taking the terms with n on one side, we get
$\Rightarrow -88=-4n$
Dividing both sides with -4, we get,
$\Rightarrow n=\dfrac{88}{4}$
$\therefore n=22$
Hence, we have obtained the ${{22}^{nd}}$ term of the A.P as $0$. Therefore, the answer is ${{22}^{nd}}$ term.
Note: Do not get confused when you get the common difference as a negative number. It can be negative or positive. Always remember whenever we are given the value of the term and we are asked to find the position of that term then we shall always use the formula ${{T}_{n}}=a+\left( n-1 \right)d$. Taking the term in the formula as (n+1) instead of (n-1) can lead to the wrong answer.
Complete step-by-step Solution:
We have been given an A.P. in the question whose first term is 84 and the nth term is 0.
Before proceeding with the question we must know that A.P is an arithmetic progression where each term can be found by adding a constant number which is called a common difference.
Now we know that the general form of an arithmetic progression is
$a,a+d,a+2d,a+3d.......$
where a is the first term and d is the common difference.
Now, we know that the nth term of the A.P. is given by the formula ${{T}_{n}}=a+\left( n-1 \right)d$, where ${{T}_{n}}$ is the nth term of the A.P.,$a$ is the first term, $n$ is the number of terms and $d$ is the common difference.
The common difference can be found using the below formula.
Common difference = the next term - the preceding term
The A.P. given in the question is $84,80,76....$.we can write the data from A.P. as
First term a = 84,
The nth term ${{T}_{n}}=0$
Common difference $\Rightarrow d=80-84=-4$
We have to find the value of n.
Therefore, we can use the formula ${{T}_{n}}=a+\left( n-1 \right)d$.
Substituting the value of $a,{{T}_{n}},d$ in the above formula, we get:
$\Rightarrow 0=84+\left( n-1 \right)(-4)$
Opening the brackets, we get
$\Rightarrow 0=84-4n+4$
Adding the constant terms and taking the terms with n on one side, we get
$\Rightarrow -88=-4n$
Dividing both sides with -4, we get,
$\Rightarrow n=\dfrac{88}{4}$
$\therefore n=22$
Hence, we have obtained the ${{22}^{nd}}$ term of the A.P as $0$. Therefore, the answer is ${{22}^{nd}}$ term.
Note: Do not get confused when you get the common difference as a negative number. It can be negative or positive. Always remember whenever we are given the value of the term and we are asked to find the position of that term then we shall always use the formula ${{T}_{n}}=a+\left( n-1 \right)d$. Taking the term in the formula as (n+1) instead of (n-1) can lead to the wrong answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it