
Which one of the following statements is true?
A) $ \cos \left( {A + B} \right) = \cos A + \cos B $
B) $ \cos \left( {A + B} \right) = \cos A\cos B $
C) $ \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B $
D) $ \cos \left( {A + B} \right) = \cos A\cos B + \sin A\sin B $
Answer
568.2k+ views
Hint: In this question, we need to find which of the above given statements is true. For this, we will consider a rotating line in an anti-clockwise direction, which makes acute angles $ a $ and $ b $ . By which we will construct a diagram and we will find the angles of the points. And use the formula of $ \sin \theta $ and $ \cos \theta $ to find which of the above statements are true.
Complete step-by-step answer:
Let a rotating line $ OX $ rotate about $ O $ in the anti-clockwise direction. From starting position to its initial position $ OX $ making an acute angle $ a $ . And again, the rotating line rotates further in the same direction and starting from position $ OY $ and makes out an acute angle $ b $ .
To understand this concept, let us construct a figure.
First draw a horizontal line $ X $ (the x-axis) and mark the origin $ O $ . Next, draw a line $ Y $ from $ O $ at an angle $ a $ above the horizontal line $ X $ and in the similar way, draw a second line $ Z $ at an angle $ b $ above that. Such that, the angle between the line $ Z $ and the x-axis is $ a + b $ . Here, $ a $ and $ b $ are positive acute angles and $ a + b < 90^\circ $ .
Mark the point $ P $ in the line $ Z $ (which is defined by the angle $ a + b $ ) at a unit distance from the origin.
Let $ PQ $ be a line, perpendicular to the line $ OQ $ defined by angle $ a $ , which is drawn from point $ Q $ on this line to point $ P $ . Therefore, $ OQP $ forms a right angle.
Let $ QA $ be a perpendicular from point $ A $ on the x-axis to $ Q $ and $ PB $ be a perpendicular from point $ B $ on the x-axis to $ P $ . Therefore, $ OAQ $ and $ OBP $ are right angles.
Now, draw $ R $ on $ PB $ such that $ QR $ is parallel to the x-axis.
From the diagram, $ OQA = \dfrac{\pi }{2} - a $
Then, $ RQO = a $
$ \Rightarrow $ $ RQP = \dfrac{\pi }{2} - a $
Then, $ RPQ = a $
Therefore, $ RPQ = \dfrac{\pi }{2} - RQP $
$ = \dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - RQO} \right) $
= $ RQO $
= $ a $
Now from the right-angled triangle $ POB $ , we get,
$ \cos (a + b) = \left( {\dfrac{{OB}}{{OP}}} \right) $
$ = \dfrac{{OA - BA}}{{OP}} $
$ = \dfrac{{OA}}{{OP}} - \dfrac{{BA}}{{OP}} $
$ = \dfrac{{OA}}{{OP}} - \dfrac{{RQ}}{{OP}} $
$ = \dfrac{{OA}}{{OQ}}.\dfrac{{OQ}}{{OP}} - \dfrac{{RQ}}{{PQ}}.\dfrac{{PQ}}{{OP}} $
We know that,
$ \sin \theta = \dfrac{{Opposite}}{{Hypotenuse}} $
And, $ \cos \theta = \dfrac{{Adjacent}}{{Hypotenuse}} $
By using the above formula, we get,
$ \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b $
Hence, option C) $ \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B $ is the true statement.
So, the correct answer is “Option C”.
Note: In this question, be careful in applying the formula of $ \sin \theta $ and $ \cos \theta $ when using the diagram. In similar way, we can find the values of $ \sin \left( {a + b} \right) $ , $ \sin \left( {a - b} \right) $ and $ \cos \left( {a - b} \right) $ . We can also use complementary angle formulae i.e., $ \sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right) $ and $ \cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right) $ to determine $ \cos \left( {a + b} \right) $ . Here, consider $ \theta = \left( {a + b} \right) $ and apply it in the formula of $ \cos \theta $ and solve it.
Complete step-by-step answer:
Let a rotating line $ OX $ rotate about $ O $ in the anti-clockwise direction. From starting position to its initial position $ OX $ making an acute angle $ a $ . And again, the rotating line rotates further in the same direction and starting from position $ OY $ and makes out an acute angle $ b $ .
To understand this concept, let us construct a figure.
First draw a horizontal line $ X $ (the x-axis) and mark the origin $ O $ . Next, draw a line $ Y $ from $ O $ at an angle $ a $ above the horizontal line $ X $ and in the similar way, draw a second line $ Z $ at an angle $ b $ above that. Such that, the angle between the line $ Z $ and the x-axis is $ a + b $ . Here, $ a $ and $ b $ are positive acute angles and $ a + b < 90^\circ $ .
Mark the point $ P $ in the line $ Z $ (which is defined by the angle $ a + b $ ) at a unit distance from the origin.
Let $ PQ $ be a line, perpendicular to the line $ OQ $ defined by angle $ a $ , which is drawn from point $ Q $ on this line to point $ P $ . Therefore, $ OQP $ forms a right angle.
Let $ QA $ be a perpendicular from point $ A $ on the x-axis to $ Q $ and $ PB $ be a perpendicular from point $ B $ on the x-axis to $ P $ . Therefore, $ OAQ $ and $ OBP $ are right angles.
Now, draw $ R $ on $ PB $ such that $ QR $ is parallel to the x-axis.
From the diagram, $ OQA = \dfrac{\pi }{2} - a $
Then, $ RQO = a $
$ \Rightarrow $ $ RQP = \dfrac{\pi }{2} - a $
Then, $ RPQ = a $
Therefore, $ RPQ = \dfrac{\pi }{2} - RQP $
$ = \dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - RQO} \right) $
= $ RQO $
= $ a $
Now from the right-angled triangle $ POB $ , we get,
$ \cos (a + b) = \left( {\dfrac{{OB}}{{OP}}} \right) $
$ = \dfrac{{OA - BA}}{{OP}} $
$ = \dfrac{{OA}}{{OP}} - \dfrac{{BA}}{{OP}} $
$ = \dfrac{{OA}}{{OP}} - \dfrac{{RQ}}{{OP}} $
$ = \dfrac{{OA}}{{OQ}}.\dfrac{{OQ}}{{OP}} - \dfrac{{RQ}}{{PQ}}.\dfrac{{PQ}}{{OP}} $
We know that,
$ \sin \theta = \dfrac{{Opposite}}{{Hypotenuse}} $
And, $ \cos \theta = \dfrac{{Adjacent}}{{Hypotenuse}} $
By using the above formula, we get,
$ \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b $
Hence, option C) $ \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B $ is the true statement.
So, the correct answer is “Option C”.
Note: In this question, be careful in applying the formula of $ \sin \theta $ and $ \cos \theta $ when using the diagram. In similar way, we can find the values of $ \sin \left( {a + b} \right) $ , $ \sin \left( {a - b} \right) $ and $ \cos \left( {a - b} \right) $ . We can also use complementary angle formulae i.e., $ \sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right) $ and $ \cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right) $ to determine $ \cos \left( {a + b} \right) $ . Here, consider $ \theta = \left( {a + b} \right) $ and apply it in the formula of $ \cos \theta $ and solve it.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

