Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

What is the derivative of sin4x?

Answer
VerifiedVerified
445.2k+ views
like imagedislike image
Hint: First of all write the given function as sin4x=(sinx)4. Assume the function (sinx) as f(x) and write (sinx)4 as [f(x)]4 . Now, use the chain rule of differentiation to differentiate the function. First differentiate the function [f(x)]4 with respect to the function f(x) and then differentiate the function f(x) with respect to x. Finally, take the product of these two derivatives to get the answer. Use the formulas d[(f(x))n]d[f(x)]=n(f(x))n1 and d[sinx]dx=cosx to get the answer.

Complete step by step solution:
Here we have been provided with the function sin4x and we are asked to find its derivative. Here we will use the chain rule of derivatives to get the answer.
Now, we can write the given function as sin4x=(sinx)4. Assuming the function (sinx) as f(x) we have the function (sinx)4 of the form [f(x)]4. So we have,
(sinx)4=[f(x)]4
On differentiating both the sides with respect to x we get,
d[(sinx)4]dx=d[f(x)]4dx
Now, according to the chain rule of differentiation first we have to differentiate the function [f(x)]4 with respect to f(x) and then we have to differentiate f(x) with respect to x. Finally, we need to consider their product to get the relation. So we get,
d[(sinx)4]dx=d[f(x)]4d[f(x)]×d[f(x)]dx
Using the formula d[(f(x))n]d[f(x)]=n(f(x))n1 we get,
d[(sinx)4]dx=4[f(x)]41×d[f(x)]dxd[(sinx)4]dx=4[f(x)]3×d[f(x)]dx
Substituting the value of f(x) we get,
d[(sinx)4]dx=4[sinx]3×d[sinx]dx
Using the formula d[sinx]dx=cosx we get,
d[(sinx)4]dx=4[sinx]3×cosxd[(sinx)4]dx=4sin3xcosx
Hence, the above relation is our answer.

Note: You must remember all the basic rules and formulas of differentiation like: - product rule, chain rule, uv rule etc. Remember the formulas of derivatives of all the basic functions like trigonometric and inverse trigonometric functions, logarithmic functions, exponential functions etc. In case if the argument of the trigonometric functions is linear like sin(ax+b) then the formula becomes d(sin(ax+b))dx=acos(ax+b). This is due to the chain rule of derivatives.
Latest Vedantu courses for you
Grade 7 | CBSE | SCHOOL | English
Vedantu 7 CBSE Pro Course - (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
MathsMaths
EnglishEnglish
ScienceScience
₹49,800 (9% Off)
₹45,300 per year
EMI starts from ₹3,775 per month
Select and buy