
What is the value of $\sin \left( 10 \right)\cos \left( 20 \right)\sin \left( 30 \right)\cos \left( 40 \right)\sin \left( 50 \right)\cos \left( 60 \right)\sin \left( 70 \right)\cos \left( 80 \right)$ ? Not in radians, in degrees.
Answer
529.2k+ views
Hint: Two angles are complementary if they add up to make ${{90}^{\circ }}$ . for complementary angles, the trigonometric ratios are related to each other as
If, $\angle A+\angle B={{90}^{\circ }}$
$\begin{align}
& \sin A=\cos B \\
& \cos A=\sin B \\
\end{align}$
Certain identities and expansions will help us in this question
$\begin{align}
& \cos \left( x+y \right)=\cos x\cos y-\sin x\sin y \\
& \cos \left( x-y \right)=\cos x\cos y+\sin x\sin y \\
& \sin \left( x+y \right)=\sin x\cos y+\cos x\sin y \\
& \sin \left( x-y \right)=\sin x\cos y-\cos x\sin y \\
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
\end{align}$
Certain trigonometric values to be remembered:
$\begin{align}
& \sin {{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \cos {{60}^{\circ }}=\sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
\end{align}$
Complete step by step answer:
Here, we can see that we have pairs of complementary angles multiplied together,
Arranging them in pairs, we get
$\left( \sin \left( 10 \right)\cos \left( 80 \right) \right)\left( \cos \left( 20 \right)\sin \left( 70 \right) \right)\left( \sin \left( 30 \right)\cos \left( 60 \right) \right)\left( \cos \left( 40 \right)\sin \left( 50 \right) \right)$
Since they are complementary angles, sine of one angle is equal to the cosine of its complement. Hence, using this relation, we get
$\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 20 \right) \right)\left( {{\sin }^{2}}\left( 30 \right) \right)\left( {{\cos }^{2}}\left( 40 \right) \right)$
Using $\sin {{30}^{\circ }}=\dfrac{1}{2}$,we have
$\dfrac{1}{4}\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 20 \right) \right)\left( {{\cos }^{2}}\left( 40 \right) \right)$
Now, we can club ${{\cos }^{2}}\left( {{20}^{\circ }} \right)$ and ${{\cos }^{2}}\left( {{40}^{\circ }} \right)$ together and use above mentioned expansions to simplify it further
$\dfrac{1}{4}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 20 \right)\cos \left( 40 \right) \right)}^{2}}$
Multiplying and dividing by 2,
$\begin{align}
& =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( 2\cos \left( 20 \right)\cos \left( 40 \right) \right)}^{2}} \\
& =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 40+20 \right)+\cos \left( 40-20 \right) \right)}^{2}} \\
& =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 60 \right)+\cos \left( 20 \right) \right)}^{2}} \\
\end{align}$
Expanding the above expression using ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
$=\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 60 \right)+{{\cos }^{2}}\left( 20 \right)+2\cos \left( 60 \right)\cos \left( 20 \right) \right)$
Using the value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$ and including ${{\sin }^{2}}\left( 10 \right)$ inside the brackets, we get
$=\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \sin \left( 10 \right)\cos \left( 20 \right) \right)}^{2}}+\sin \left( 10 \right)\sin \left( 10 \right)\cos \left( 20 \right) \right)$
Now, consider $\sin \left( 10 \right)\cos \left( 20 \right)$
Multiplying and dividing by 2, we get
$\dfrac{2\sin \left( 10 \right)\cos \left( 20 \right)}{2}$
Using the above expansions, this expression will be simplified as
$\begin{align}
& =\dfrac{\sin \left( 10+20 \right)+\sin \left( 10-20 \right)}{2} \\
& =\dfrac{\sin \left( 30 \right)-\sin \left( 10 \right)}{2} \\
\end{align}$
Using the value of $\sin {{30}^{\circ }}=\dfrac{1}{2}$, we have
$=\dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2}$
Now using this value in the above formulated expression, we have
$\begin{align}
& =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \sin \left( 10 \right)\cos \left( 20 \right) \right)}^{2}}+\sin \left( 10 \right)\sin \left( 10 \right)\cos \left( 20 \right) \right) \\
& =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right)}^{2}}+\sin \left( 10 \right)\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right) \right) \\
\end{align}$
Expanding the expression, we get
$\begin{align}
& =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+\left( \dfrac{1}{16}+\dfrac{{{\sin }^{2}}\left( 10 \right)}{4}-\dfrac{\sin \left( 10 \right)}{4} \right)+\sin \left( 10 \right)\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right) \right) \\
& =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+\dfrac{1}{16}+\dfrac{{{\sin }^{2}}\left( 10 \right)}{4}-\dfrac{\sin \left( 10 \right)}{4}+\dfrac{\sin \left( 10 \right)}{4}-\dfrac{{{\sin }^{2}}\left( 10 \right)}{2} \right) \\
& =\dfrac{1}{16}\times \dfrac{1}{16} \\
& =\dfrac{1}{256} \\
\end{align}$
Hence, the final value of $\sin \left( 10 \right)\cos \left( 20 \right)\sin \left( 30 \right)\cos \left( 40 \right)\sin \left( 50 \right)\cos \left( 60 \right)\sin \left( 70 \right)\cos \left( 80 \right)$ is $\dfrac{1}{256}$ .
Note: While solving such large expressions, always keep note of the constants that are being multiplied or divided in the expression because any change in them will change the whole answer. Also, apply each trigonometric identity carefully keeping in mind the positive and negative signs.
If, $\angle A+\angle B={{90}^{\circ }}$
$\begin{align}
& \sin A=\cos B \\
& \cos A=\sin B \\
\end{align}$
Certain identities and expansions will help us in this question
$\begin{align}
& \cos \left( x+y \right)=\cos x\cos y-\sin x\sin y \\
& \cos \left( x-y \right)=\cos x\cos y+\sin x\sin y \\
& \sin \left( x+y \right)=\sin x\cos y+\cos x\sin y \\
& \sin \left( x-y \right)=\sin x\cos y-\cos x\sin y \\
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
\end{align}$
Certain trigonometric values to be remembered:
$\begin{align}
& \sin {{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \cos {{60}^{\circ }}=\sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
\end{align}$
Complete step by step answer:
Here, we can see that we have pairs of complementary angles multiplied together,
Arranging them in pairs, we get
$\left( \sin \left( 10 \right)\cos \left( 80 \right) \right)\left( \cos \left( 20 \right)\sin \left( 70 \right) \right)\left( \sin \left( 30 \right)\cos \left( 60 \right) \right)\left( \cos \left( 40 \right)\sin \left( 50 \right) \right)$
Since they are complementary angles, sine of one angle is equal to the cosine of its complement. Hence, using this relation, we get
$\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 20 \right) \right)\left( {{\sin }^{2}}\left( 30 \right) \right)\left( {{\cos }^{2}}\left( 40 \right) \right)$
Using $\sin {{30}^{\circ }}=\dfrac{1}{2}$,we have
$\dfrac{1}{4}\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 20 \right) \right)\left( {{\cos }^{2}}\left( 40 \right) \right)$
Now, we can club ${{\cos }^{2}}\left( {{20}^{\circ }} \right)$ and ${{\cos }^{2}}\left( {{40}^{\circ }} \right)$ together and use above mentioned expansions to simplify it further
$\dfrac{1}{4}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 20 \right)\cos \left( 40 \right) \right)}^{2}}$
Multiplying and dividing by 2,
$\begin{align}
& =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( 2\cos \left( 20 \right)\cos \left( 40 \right) \right)}^{2}} \\
& =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 40+20 \right)+\cos \left( 40-20 \right) \right)}^{2}} \\
& =\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right){{\left( \cos \left( 60 \right)+\cos \left( 20 \right) \right)}^{2}} \\
\end{align}$
Expanding the above expression using ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
$=\dfrac{1}{16}\left( {{\sin }^{2}}\left( 10 \right) \right)\left( {{\cos }^{2}}\left( 60 \right)+{{\cos }^{2}}\left( 20 \right)+2\cos \left( 60 \right)\cos \left( 20 \right) \right)$
Using the value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$ and including ${{\sin }^{2}}\left( 10 \right)$ inside the brackets, we get
$=\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \sin \left( 10 \right)\cos \left( 20 \right) \right)}^{2}}+\sin \left( 10 \right)\sin \left( 10 \right)\cos \left( 20 \right) \right)$
Now, consider $\sin \left( 10 \right)\cos \left( 20 \right)$
Multiplying and dividing by 2, we get
$\dfrac{2\sin \left( 10 \right)\cos \left( 20 \right)}{2}$
Using the above expansions, this expression will be simplified as
$\begin{align}
& =\dfrac{\sin \left( 10+20 \right)+\sin \left( 10-20 \right)}{2} \\
& =\dfrac{\sin \left( 30 \right)-\sin \left( 10 \right)}{2} \\
\end{align}$
Using the value of $\sin {{30}^{\circ }}=\dfrac{1}{2}$, we have
$=\dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2}$
Now using this value in the above formulated expression, we have
$\begin{align}
& =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \sin \left( 10 \right)\cos \left( 20 \right) \right)}^{2}}+\sin \left( 10 \right)\sin \left( 10 \right)\cos \left( 20 \right) \right) \\
& =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+{{\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right)}^{2}}+\sin \left( 10 \right)\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right) \right) \\
\end{align}$
Expanding the expression, we get
$\begin{align}
& =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+\left( \dfrac{1}{16}+\dfrac{{{\sin }^{2}}\left( 10 \right)}{4}-\dfrac{\sin \left( 10 \right)}{4} \right)+\sin \left( 10 \right)\left( \dfrac{1}{4}-\dfrac{\sin \left( 10 \right)}{2} \right) \right) \\
& =\dfrac{1}{16}\left( \dfrac{{{\sin }^{2}}\left( 10 \right)}{4}+\dfrac{1}{16}+\dfrac{{{\sin }^{2}}\left( 10 \right)}{4}-\dfrac{\sin \left( 10 \right)}{4}+\dfrac{\sin \left( 10 \right)}{4}-\dfrac{{{\sin }^{2}}\left( 10 \right)}{2} \right) \\
& =\dfrac{1}{16}\times \dfrac{1}{16} \\
& =\dfrac{1}{256} \\
\end{align}$
Hence, the final value of $\sin \left( 10 \right)\cos \left( 20 \right)\sin \left( 30 \right)\cos \left( 40 \right)\sin \left( 50 \right)\cos \left( 60 \right)\sin \left( 70 \right)\cos \left( 80 \right)$ is $\dfrac{1}{256}$ .
Note: While solving such large expressions, always keep note of the constants that are being multiplied or divided in the expression because any change in them will change the whole answer. Also, apply each trigonometric identity carefully keeping in mind the positive and negative signs.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

