
Using suitable identity, find the value of:
\[\dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}\]
Answer
588k+ views
Hint: We can write the given expression as \[\dfrac{{{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}}{{{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)-{{\left( 14 \right)}^{2}}}\].
Use the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$to simplify the given expression and find the required value. Take a = 86 and b = 14 for simplifying.
Complete step-by-step answer:
Given expression is: \[\dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}\]
We can write the given expression as \[\dfrac{{{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}}{{{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)-{{\left( 14 \right)}^{2}}}\].
As in question, it is clearly mentioned that we have to find the value of a given expression using any suitable identity, so we will not solve it directly but we will first find an identity which can be used for simplifying the given expression.
We know the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$.
In this identity let us put a = 86 and b = 14.
After putting a = 86 and b = 14, we will get,
${{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}=\left( 86+14 \right)\left( {{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)+{{\left( 14 \right)}^{2}} \right)..........\left( 1 \right)$
In this identity both the numerator and denominator of given expression is involved. So, this will be a suitable identity. Using this identity we can easily compute the value of a given expression.
On replacing ${{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}$ in the numerator of given expression with $\left( 86+14 \right)\left( {{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)+{{\left( 14 \right)}^{2}} \right)$ from equation (1), we will get,
\[\begin{align}
& \dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}=\dfrac{{{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}}{{{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)-{{\left( 14 \right)}^{2}}} \\
& =\dfrac{\left( 86+14 \right)\left( {{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)+{{\left( 14 \right)}^{2}} \right)}{{{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)-{{\left( 14 \right)}^{2}}}\ \ \left[ \text{using equation }\left( 1 \right) \right] \\
\end{align}\]
On dividing both numerator and denominator by $\left[ {{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)+{{\left( 14 \right)}^{2}} \right]$, we will get,
\[\begin{align}
& \dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}=\left( 86+14 \right) \\
& =100 \\
\end{align}\]
So, the required value of \[\dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}\] is 100.
Note: In our solution, we have used the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$. We can prove this identity in the following way,
$LHS={{a}^{3}}+{{b}^{3}}$
Adding and subtracting 3ab (a + b), we will get,
$LHS={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)-3ab\left( a+b \right)$
We know, ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
On replacing ${{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$ with ${{\left( a+b \right)}^{3}}$ in above equation, we will get,
$LHS={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)$
Taking $\left( a+b \right)$ common from both the terms, we will get,
$LHS=\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right]$
We know, ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Replacing ${{\left( a+b \right)}^{2}}$ with ${{a}^{2}}+{{b}^{2}}+2ab$ in above equation, we will get,
$\begin{align}
& LHS=\left( a+b \right)\left[ {{a}^{2}}+{{b}^{2}}+2ab-3ab \right] \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow LHS=RHS \\
\end{align}$
Use the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$to simplify the given expression and find the required value. Take a = 86 and b = 14 for simplifying.
Complete step-by-step answer:
Given expression is: \[\dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}\]
We can write the given expression as \[\dfrac{{{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}}{{{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)-{{\left( 14 \right)}^{2}}}\].
As in question, it is clearly mentioned that we have to find the value of a given expression using any suitable identity, so we will not solve it directly but we will first find an identity which can be used for simplifying the given expression.
We know the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$.
In this identity let us put a = 86 and b = 14.
After putting a = 86 and b = 14, we will get,
${{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}=\left( 86+14 \right)\left( {{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)+{{\left( 14 \right)}^{2}} \right)..........\left( 1 \right)$
In this identity both the numerator and denominator of given expression is involved. So, this will be a suitable identity. Using this identity we can easily compute the value of a given expression.
On replacing ${{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}$ in the numerator of given expression with $\left( 86+14 \right)\left( {{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)+{{\left( 14 \right)}^{2}} \right)$ from equation (1), we will get,
\[\begin{align}
& \dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}=\dfrac{{{\left( 86 \right)}^{3}}+{{\left( 14 \right)}^{3}}}{{{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)-{{\left( 14 \right)}^{2}}} \\
& =\dfrac{\left( 86+14 \right)\left( {{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)+{{\left( 14 \right)}^{2}} \right)}{{{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)-{{\left( 14 \right)}^{2}}}\ \ \left[ \text{using equation }\left( 1 \right) \right] \\
\end{align}\]
On dividing both numerator and denominator by $\left[ {{\left( 86 \right)}^{2}}-\left( 86 \right)\left( 14 \right)+{{\left( 14 \right)}^{2}} \right]$, we will get,
\[\begin{align}
& \dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}=\left( 86+14 \right) \\
& =100 \\
\end{align}\]
So, the required value of \[\dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14+14\times 14}\] is 100.
Note: In our solution, we have used the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$. We can prove this identity in the following way,
$LHS={{a}^{3}}+{{b}^{3}}$
Adding and subtracting 3ab (a + b), we will get,
$LHS={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)-3ab\left( a+b \right)$
We know, ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
On replacing ${{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$ with ${{\left( a+b \right)}^{3}}$ in above equation, we will get,
$LHS={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)$
Taking $\left( a+b \right)$ common from both the terms, we will get,
$LHS=\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right]$
We know, ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Replacing ${{\left( a+b \right)}^{2}}$ with ${{a}^{2}}+{{b}^{2}}+2ab$ in above equation, we will get,
$\begin{align}
& LHS=\left( a+b \right)\left[ {{a}^{2}}+{{b}^{2}}+2ab-3ab \right] \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow LHS=RHS \\
\end{align}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What is the difference between rai and mustard see class 8 biology CBSE

