Answer
Verified
390k+ views
Hint: As we know that we have to apply the pascal’s triangle to expand the binomial. We know that it is an infinite equilateral triangle which consists of a sequence of numbers. It starts with $1$. The second row consists of the sum of two numbers above it, Similarly we can find out the values of the next rows.
Complete step-by-step answer:
As we know that the main application of this triangle is to solve a binomial function. If the binomial equation is ${(a + b)^n}$, then the expansion is ${C_1}{a^n}{b^0} + {C_2}{a^{n - 1}}{b^1} + ... + {C_n}{a^0}{b^n}$.
The above equation represents the binomial expansion formula.
But here we are not going to solve this question by the binomial expansion.
Pascal's triangle is a triangular array constructed by summing adjacent elements in preceding rows. Pascal's triangle contains the values of the binomial coefficient.
The pascal’s triangle is given by
\[\begin{array}{*{20}{c}}
{{{(x + y)}^0} = } \\
{{{(x + y)}^1} = } \\
{{{(x + y)}^2} = } \\
{{{(x + y)}^3} = } \\
{{{(x + y)}^4} = } \\
{{{(x + y)}^5} = }
\end{array}\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{} \\
{}&{}&{}&{}&1&{}&1&{}&{}&{}&{} \\
{}&{}&{}&1&{}&2&{}&1&{}&{}&{} \\
{}&{}&1&{}&3&{}&3&{}&1&{}&{} \\
{}&1&{}&4&{}&6&{}&4&{}&1&{} \\
1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1
\end{array}\]
The above pascal’s triangle is given till 5th power.
Since we have $n = 5$, and from the above triangle we can see that the fifth order term is $1,5,10,10,5,1$.
For this we have the formula, ${(a + b)^5} = 1{a^5}{b^0} + 5{a^4}{b^1} + 10{a^3}{b^2} + 10{a^2}{b^3} + 5{x^1}{b^4} + 1{a^0}{b^5}$.
By applying the above formula we can write ${(x + 2y)^5} = 1{(x)^5}{(2y)^0} + 5{(x)^4}{(2y)^1} + 10{(x)^3}{(2y)^2} + 10{(x)^2}{(2y)^3} + 5{(x)^1}{(2y)^4} + 1{(x)^0}{(2y)^5}$.
On multiplying
It gives us the expression: ${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$.
Hence the required value is ${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$.
So, the correct answer is “${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$”.
Note: We should note that pascal’s triangle is helpful only when the value of $n$ is small in the equation ${(a + b)^n}$. If the value is large then it is very tedious to draw the triangle until we reach $n$. The formula that we used above because the question has the positive sign i.e. sum of the values.
Complete step-by-step answer:
As we know that the main application of this triangle is to solve a binomial function. If the binomial equation is ${(a + b)^n}$, then the expansion is ${C_1}{a^n}{b^0} + {C_2}{a^{n - 1}}{b^1} + ... + {C_n}{a^0}{b^n}$.
The above equation represents the binomial expansion formula.
But here we are not going to solve this question by the binomial expansion.
Pascal's triangle is a triangular array constructed by summing adjacent elements in preceding rows. Pascal's triangle contains the values of the binomial coefficient.
The pascal’s triangle is given by
\[\begin{array}{*{20}{c}}
{{{(x + y)}^0} = } \\
{{{(x + y)}^1} = } \\
{{{(x + y)}^2} = } \\
{{{(x + y)}^3} = } \\
{{{(x + y)}^4} = } \\
{{{(x + y)}^5} = }
\end{array}\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{} \\
{}&{}&{}&{}&1&{}&1&{}&{}&{}&{} \\
{}&{}&{}&1&{}&2&{}&1&{}&{}&{} \\
{}&{}&1&{}&3&{}&3&{}&1&{}&{} \\
{}&1&{}&4&{}&6&{}&4&{}&1&{} \\
1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1
\end{array}\]
The above pascal’s triangle is given till 5th power.
Since we have $n = 5$, and from the above triangle we can see that the fifth order term is $1,5,10,10,5,1$.
For this we have the formula, ${(a + b)^5} = 1{a^5}{b^0} + 5{a^4}{b^1} + 10{a^3}{b^2} + 10{a^2}{b^3} + 5{x^1}{b^4} + 1{a^0}{b^5}$.
By applying the above formula we can write ${(x + 2y)^5} = 1{(x)^5}{(2y)^0} + 5{(x)^4}{(2y)^1} + 10{(x)^3}{(2y)^2} + 10{(x)^2}{(2y)^3} + 5{(x)^1}{(2y)^4} + 1{(x)^0}{(2y)^5}$.
On multiplying
It gives us the expression: ${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$.
Hence the required value is ${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$.
So, the correct answer is “${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$”.
Note: We should note that pascal’s triangle is helpful only when the value of $n$ is small in the equation ${(a + b)^n}$. If the value is large then it is very tedious to draw the triangle until we reach $n$. The formula that we used above because the question has the positive sign i.e. sum of the values.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE