
How do you use the angle sum identities to find the exact values of $\tan \left( {15} \right)$ and $\tan \left( {45} \right)$?
Answer
469.5k+ views
Hint: To solve this problem, you should know the formula for the addition and difference identity and also you must know how we can divide the $\theta $ into the addition form or in the difference form so that we can apply the value in either one of these identities and solve this problem.
Formula used: $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Complete answer:
To solve this question, we need to divide $\theta = 15$ into known $\theta $ values, so we have to divide $\theta = 15$ into \[\left( {45 - 30} \right)\] we get,
\[\tan {15^ \circ } = \tan ({45^ \circ } - {30^ \circ })\]
The formula for the difference identity is,
$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
\[tan(45 - 30) = \dfrac{{tan45 - tan30}}{{1 + tan45\,tan30}}\]
It is mandatory to divide the value of $\theta $ into known values and now we can able to solve this problem as we know the value of\[\tan {45^ \circ } = 1\] , \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\]. Applying the values in the formula we get,
\[tan(45 - 30) = \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + 1\left( {\dfrac{1}{{\sqrt 3 }}} \right)}}\]
Now taking LCM in numerator as well as denominator, we get
$ \Rightarrow \tan (15) = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}}$
On further simplification, we get
$ \Rightarrow \tan \left( {15} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
Now, we will calculate the value of $\tan \left( {{{30}^ \circ }} \right)$ using the angle difference identity for tangent as \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
So, we take angle $A = {45^ \circ }$ and $B = {15^ \circ }$.
Now, substituting the angles in the formulae, we get,
\[ \Rightarrow \tan \left( {{{45}^ \circ } - {{15}^ \circ }} \right) = \dfrac{{\tan {{45}^ \circ } - \tan {{15}^ \circ }}}{{1 + \tan {{45}^ \circ }\tan {{15}^ \circ }}}\]
Substituting the value of tangent of both the angles as $\tan {45^ \circ } = 1$ and \[\tan {15^ \circ } = \left( {\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)\], we get,
\[ \Rightarrow \tan \left( {{{30}^ \circ }} \right) = \dfrac{{1 - \left( {\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)}}{{1 + \left( 1 \right)\left( {\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)}}\]
Simplifying the calculations, we get,
\[ \Rightarrow \tan \left( {{{30}^ \circ }} \right) = \dfrac{{\left( {\dfrac{{\sqrt 3 + 1 - \left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 + 1}}} \right)}}{{\left( {\dfrac{{\sqrt 3 + 1 + \sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)}}\]
Cancelling the like terms with opposite signs, we get,
\[ \Rightarrow \tan \left( {{{30}^ \circ }} \right) = \dfrac{{\left( {\dfrac{2}{{\sqrt 3 + 1}}} \right)}}{{\left( {\dfrac{{2\sqrt 3 }}{{\sqrt 3 + 1}}} \right)}}\]
Cancelling the common factors, we get,
\[ \Rightarrow \tan \left( {{{30}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\]
Note:
We can also use the addition identity to solve this problem and the formula for addition identity is, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ where we will add forty- five degree with fifteen degrees to get the sum of sixty degrees. In this identity we know the value of $\tan 45\,\,and\,\,\tan 60$ and therefore we will get the value of $\tan 15$.
Formula used: $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Complete answer:
To solve this question, we need to divide $\theta = 15$ into known $\theta $ values, so we have to divide $\theta = 15$ into \[\left( {45 - 30} \right)\] we get,
\[\tan {15^ \circ } = \tan ({45^ \circ } - {30^ \circ })\]
The formula for the difference identity is,
$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
\[tan(45 - 30) = \dfrac{{tan45 - tan30}}{{1 + tan45\,tan30}}\]
It is mandatory to divide the value of $\theta $ into known values and now we can able to solve this problem as we know the value of\[\tan {45^ \circ } = 1\] , \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\]. Applying the values in the formula we get,
\[tan(45 - 30) = \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + 1\left( {\dfrac{1}{{\sqrt 3 }}} \right)}}\]
Now taking LCM in numerator as well as denominator, we get
$ \Rightarrow \tan (15) = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}}$
On further simplification, we get
$ \Rightarrow \tan \left( {15} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
Now, we will calculate the value of $\tan \left( {{{30}^ \circ }} \right)$ using the angle difference identity for tangent as \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
So, we take angle $A = {45^ \circ }$ and $B = {15^ \circ }$.
Now, substituting the angles in the formulae, we get,
\[ \Rightarrow \tan \left( {{{45}^ \circ } - {{15}^ \circ }} \right) = \dfrac{{\tan {{45}^ \circ } - \tan {{15}^ \circ }}}{{1 + \tan {{45}^ \circ }\tan {{15}^ \circ }}}\]
Substituting the value of tangent of both the angles as $\tan {45^ \circ } = 1$ and \[\tan {15^ \circ } = \left( {\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)\], we get,
\[ \Rightarrow \tan \left( {{{30}^ \circ }} \right) = \dfrac{{1 - \left( {\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)}}{{1 + \left( 1 \right)\left( {\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)}}\]
Simplifying the calculations, we get,
\[ \Rightarrow \tan \left( {{{30}^ \circ }} \right) = \dfrac{{\left( {\dfrac{{\sqrt 3 + 1 - \left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 + 1}}} \right)}}{{\left( {\dfrac{{\sqrt 3 + 1 + \sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)}}\]
Cancelling the like terms with opposite signs, we get,
\[ \Rightarrow \tan \left( {{{30}^ \circ }} \right) = \dfrac{{\left( {\dfrac{2}{{\sqrt 3 + 1}}} \right)}}{{\left( {\dfrac{{2\sqrt 3 }}{{\sqrt 3 + 1}}} \right)}}\]
Cancelling the common factors, we get,
\[ \Rightarrow \tan \left( {{{30}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\]
Note:
We can also use the addition identity to solve this problem and the formula for addition identity is, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ where we will add forty- five degree with fifteen degrees to get the sum of sixty degrees. In this identity we know the value of $\tan 45\,\,and\,\,\tan 60$ and therefore we will get the value of $\tan 15$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

