
Two cards are drawn at random from a pack of 52 cards. What is the probability that it will be
a). A club and a heart
b). A king and a queen
c).two kings
d).two cards from the same suit.
Answer
572.7k+ views
Hint: From the pack of 52 cards 2 were taken out randomly. Therefore, the total number of outcomes will be ;
\[\text{total number of outcome}{{=}^{52}}{{C}_{2}}=\dfrac{52!}{2!\left( 52-2 \right)!}=\dfrac{52!}{(2!)(50!)}=\dfrac{52\times 51}{2}=1326\] which will not change throughout the sums.
We will make favorable outcomes according to the question given one by one and solve the question accordingly. Suppose, for a club and a heart we know that these to two are two different suits therefore we will choose them separately \[^{13}{{C}_{1}}{{\times }^{13}}{{C}_{1}}\].
Formula used:
\[\text{probability}=\dfrac{\text{total favourable outcome}}{\text{total number of outcome}}\]
\[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Complete step-by-step answer:
a). There are 13 cards in the club and 13 cards in the heart. We need to pick two cards at random so we will pick one card from each suit.
\[
\text{favourable outcome}{{=}^{13}}{{C}_{1}}{{\times }^{13}}{{C}_{1}} \text{probability}=\dfrac{^{13}{{C}_{1}}{{\times }^{13}}{{C}_{1}}}{^{52}{{C}_{2}}}=\dfrac{13\times 13}{\dfrac{52!}{2!\left( 52-2 \right)!}}=\dfrac{13\times 13}{1326}\text{=0}\text{.12745 }{{\text{ }\!\![\!\!\text{ }}^{n}}{{\text{C}}_{1}}\text{=n }\!\!]\!\!\text{ }
\]
Therefore, the probability that it will be a club and a heart will be 0.12745.
b). There are 4 kings in 52 cards. Therefore, the favourable number of outcome will be
\[\text{favourable outcome}{{=}^{4}}{{C}_{2}}\]
probability of getting two kings are :
\[\text{probability}=\dfrac{^{4}{{C}_{2}}}{^{52}{{C}_{2}}}=\dfrac{6}{1326}=0.004524\text{ }\!\![\!\!\text{ using}{{\text{ }}^{n}}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\text{ }\!\!]\!\!\text{ }\]
c). There are 4 kings and 4 queens but we need only 1 king and 1 queen. Therefore, the favourable number of outcomes will be \[\text{favourable outcome}{{=}^{4}}{{C}_{1}}{{\times }^{4}}{{C}_{1}}\]
probability....
\[\text{probability}=\dfrac{^{4}{{C}_{1}}{{\times }^{4}}{{C}_{1}}}{^{52}{{C}_{2}}}=\dfrac{4\times 4}{1326}=0.012066\text{ }{{\text{ }\!\![\!\!\text{ }}^{n}}{{\text{C}}_{1}}\text{=n};\,\,\,\text{usnig }\dfrac{n!}{r!\left( n-r \right)!}\text{ }\!\!]\!\!\text{ }\]
Therefore, the probability that it will be a king and a king will be 0.01206
d). Here, we first need to choose a suit. Since we don’t know the suit we need to pick out a suit from the four suits and from that suit we will pick 2 cards from the 13 cards.
Therefore the favorable number of outcomes is...
\[\text{favourable outcome}{{=}^{4}}{{C}_{1}}{{\times }^{13}}{{C}_{2}}\text{ }\!\![\!\!\text{ selecting the suit then picking 2 cards }\!\!]\!\!\text{ }\]
Probability is.....
\[\text{probability}=\dfrac{^{4}{{C}_{1}}{{\times }^{13}}{{C}_{2}}}{^{52}{{C}_{2}}}=\dfrac{4\times 78}{1326}=0.2352\text{ }{{\text{ }\!\![\!\!\text{ }}^{n}}{{\text{C}}_{1}}\text{=n};\,\,\,\text{usnig }\dfrac{n!}{r!\left( n-r \right)!}\text{ }\!\!]\!\!\text{ }\]
Therefore, the probability that it will be 2 cards from the same suit will be 0.2352.
Note: In question subpart b) and c) we do not choose a suit first because there are only 4 kings and queens. Picking out any suit and then choosing the king or queen will yield us the wrong answer since all the king and queen are the same unlike the normal cards, including an ace, where they have different colors and shapes of their suit.
In subpart d) we will need to pick out a separate suit first because we ‘maybe’ get normal cards or king or queen. Therefore, it is wise to choose a suit and then select the cards.
\[\text{total number of outcome}{{=}^{52}}{{C}_{2}}=\dfrac{52!}{2!\left( 52-2 \right)!}=\dfrac{52!}{(2!)(50!)}=\dfrac{52\times 51}{2}=1326\] which will not change throughout the sums.
We will make favorable outcomes according to the question given one by one and solve the question accordingly. Suppose, for a club and a heart we know that these to two are two different suits therefore we will choose them separately \[^{13}{{C}_{1}}{{\times }^{13}}{{C}_{1}}\].
Formula used:
\[\text{probability}=\dfrac{\text{total favourable outcome}}{\text{total number of outcome}}\]
\[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Complete step-by-step answer:
a). There are 13 cards in the club and 13 cards in the heart. We need to pick two cards at random so we will pick one card from each suit.
\[
\text{favourable outcome}{{=}^{13}}{{C}_{1}}{{\times }^{13}}{{C}_{1}} \text{probability}=\dfrac{^{13}{{C}_{1}}{{\times }^{13}}{{C}_{1}}}{^{52}{{C}_{2}}}=\dfrac{13\times 13}{\dfrac{52!}{2!\left( 52-2 \right)!}}=\dfrac{13\times 13}{1326}\text{=0}\text{.12745 }{{\text{ }\!\![\!\!\text{ }}^{n}}{{\text{C}}_{1}}\text{=n }\!\!]\!\!\text{ }
\]
Therefore, the probability that it will be a club and a heart will be 0.12745.
b). There are 4 kings in 52 cards. Therefore, the favourable number of outcome will be
\[\text{favourable outcome}{{=}^{4}}{{C}_{2}}\]
probability of getting two kings are :
\[\text{probability}=\dfrac{^{4}{{C}_{2}}}{^{52}{{C}_{2}}}=\dfrac{6}{1326}=0.004524\text{ }\!\![\!\!\text{ using}{{\text{ }}^{n}}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\text{ }\!\!]\!\!\text{ }\]
c). There are 4 kings and 4 queens but we need only 1 king and 1 queen. Therefore, the favourable number of outcomes will be \[\text{favourable outcome}{{=}^{4}}{{C}_{1}}{{\times }^{4}}{{C}_{1}}\]
probability....
\[\text{probability}=\dfrac{^{4}{{C}_{1}}{{\times }^{4}}{{C}_{1}}}{^{52}{{C}_{2}}}=\dfrac{4\times 4}{1326}=0.012066\text{ }{{\text{ }\!\![\!\!\text{ }}^{n}}{{\text{C}}_{1}}\text{=n};\,\,\,\text{usnig }\dfrac{n!}{r!\left( n-r \right)!}\text{ }\!\!]\!\!\text{ }\]
Therefore, the probability that it will be a king and a king will be 0.01206
d). Here, we first need to choose a suit. Since we don’t know the suit we need to pick out a suit from the four suits and from that suit we will pick 2 cards from the 13 cards.
Therefore the favorable number of outcomes is...
\[\text{favourable outcome}{{=}^{4}}{{C}_{1}}{{\times }^{13}}{{C}_{2}}\text{ }\!\![\!\!\text{ selecting the suit then picking 2 cards }\!\!]\!\!\text{ }\]
Probability is.....
\[\text{probability}=\dfrac{^{4}{{C}_{1}}{{\times }^{13}}{{C}_{2}}}{^{52}{{C}_{2}}}=\dfrac{4\times 78}{1326}=0.2352\text{ }{{\text{ }\!\![\!\!\text{ }}^{n}}{{\text{C}}_{1}}\text{=n};\,\,\,\text{usnig }\dfrac{n!}{r!\left( n-r \right)!}\text{ }\!\!]\!\!\text{ }\]
Therefore, the probability that it will be 2 cards from the same suit will be 0.2352.
Note: In question subpart b) and c) we do not choose a suit first because there are only 4 kings and queens. Picking out any suit and then choosing the king or queen will yield us the wrong answer since all the king and queen are the same unlike the normal cards, including an ace, where they have different colors and shapes of their suit.
In subpart d) we will need to pick out a separate suit first because we ‘maybe’ get normal cards or king or queen. Therefore, it is wise to choose a suit and then select the cards.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

