To an ideal trigonometric gas 800 Cal heat energy is given at constant pressure. If the vibrational mode is neglected, then energy used by gas in work done against surrounding is:
A. 200 Cal
B. 300 Cal
C. 400 Cal
D. 60 Cal
Answer
Verified
496.5k+ views
Hint: - We must know the ideal gas equation for solving this question. Hence our ideal gas equation is PV = nRT. It can be established from the postulates of the kinetic theory of gases developed by Clerk Maxwell.
Complete answer:
According to the first law of thermodynamics,
$\Delta U = q + W$
$W = \Delta U - q$ ---(i)
Here ΔU is the change in the internal energy system and W is the work done by the system.
We know
$W = P\Delta V$----(ii)
From (i) & (ii)
$P\Delta V = \Delta U - q$
$\Delta U = q + P\Delta V$---(iii)
Also, we know
$\Delta U = n{C_V}\Delta T$
Initial internal energy of n moles of diatomic gas is
${U_1} = n\left( {\dfrac{6}{2}R} \right){T_1}$=$3nR{T_1}$
Now, Internal energy of gas after heating is
${U_2} = n\left( {\dfrac{6}{2}R} \right){T_2}$=$3nR{T_2}$
Therefore,
$\Delta U = U_2 - U_1$
$\Delta U = 3nR{T_2} - 3nR{T_1}$
$\Delta U = 3nR({T_2} - {T_1})$
$\Delta U = 3nR\Delta T$
We know that in ideal gas equation,
$PV = nRT$
$P\Delta V = nR\Delta T$
$\Delta U = 3P\Delta V$---(iv)
From (iii) and (iv)
$3P\Delta V = q + P\Delta V$
$2P\Delta V = q$
$P\Delta V = \dfrac{q}{2}$
$W = \dfrac{{800}}{2}$
W=400 Cal from (i)
Hence option C is correct i.e., work done is 400 Cal
Note: - An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subjected to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and it is also amenable to analysis under statistical mechanics
Complete answer:
According to the first law of thermodynamics,
$\Delta U = q + W$
$W = \Delta U - q$ ---(i)
Here ΔU is the change in the internal energy system and W is the work done by the system.
We know
$W = P\Delta V$----(ii)
From (i) & (ii)
$P\Delta V = \Delta U - q$
$\Delta U = q + P\Delta V$---(iii)
Also, we know
$\Delta U = n{C_V}\Delta T$
Initial internal energy of n moles of diatomic gas is
${U_1} = n\left( {\dfrac{6}{2}R} \right){T_1}$=$3nR{T_1}$
Now, Internal energy of gas after heating is
${U_2} = n\left( {\dfrac{6}{2}R} \right){T_2}$=$3nR{T_2}$
Therefore,
$\Delta U = U_2 - U_1$
$\Delta U = 3nR{T_2} - 3nR{T_1}$
$\Delta U = 3nR({T_2} - {T_1})$
$\Delta U = 3nR\Delta T$
We know that in ideal gas equation,
$PV = nRT$
$P\Delta V = nR\Delta T$
$\Delta U = 3P\Delta V$---(iv)
From (iii) and (iv)
$3P\Delta V = q + P\Delta V$
$2P\Delta V = q$
$P\Delta V = \dfrac{q}{2}$
$W = \dfrac{{800}}{2}$
W=400 Cal from (i)
Hence option C is correct i.e., work done is 400 Cal
Note: - An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subjected to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and it is also amenable to analysis under statistical mechanics
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE