
Through a point P (h, k, l) a plane is drawn at right angles to OP to meet the coordinate axes in A, B and C. If OP = p, ${A_{xy}}$ is the area of projection of triangle ABC on XY–plane, ${A_{yz}}$ is area of projection of triangle ABC on YZ–plane, then
$\left( a \right)\Delta = \left| {\dfrac{{{p^5}}}{{hkl}}} \right|$
$\left( b \right)\Delta = \left| {\dfrac{{{p^5}}}{{2hkl}}} \right|$
$\left( c \right)\dfrac{{{A_{xy}}}}{{{A_{yz}}}} = \left| {\dfrac{l}{h}} \right|$
$\left( d \right)\dfrac{{{A_{xy}}}}{{{A_{yz}}}} = \left| {\dfrac{h}{l}} \right|$
Answer
573.6k+ views
Hint: In this particular question use the concept of direction ratios to find the equation of plane which is normal to OP which is given as, ax + by + cz = d, where a, b and c are the direction ratios of line OP and d is the distance of OP, so use these concept to reach the solution of the question.
Complete step-by-step answer:
Given data:
A point P (h, k, l) a plane is drawn at right angles to OP to meet the coordinate axes in A, B and C.
It is also given that OP = p.
Where O is the origin (0, 0, 0)
So the distance of point P from the origin is given as,
$ \Rightarrow OP = \sqrt {{{\left( {h - 0} \right)}^2} + {{\left( {k - 0} \right)}^2}{{\left( {l - 0} \right)}^2}} = \sqrt {{h^2} + {k^2} + {l^2}} $
$ \Rightarrow p = \sqrt {{h^2} + {k^2} + {l^2}} $
$ \Rightarrow {p^2} = {h^2} + {k^2} + {l^2}$.................... (1)
Now the direction ratios of line OP is given as
$\left( {\dfrac{h}{p},\dfrac{k}{p},\dfrac{l}{p}} \right)$
Now since OP is normal to the plane so the equation of plane is given as,
$ \Rightarrow \dfrac{h}{p}x + \dfrac{k}{p}y + \dfrac{l}{p}z = p$
$ \Rightarrow hx + ky + lz = {p^2}$
Now as we know that the coordinates of triangle ABC lie on coordinates axis,
So for the coordinates of A substitute y = z = 0,
So the coordinate of A is $\left( {\dfrac{{{p^2}}}{h},0,0} \right)$
Similarly coordinates of B and C are $\left( {0,\dfrac{{{p^2}}}{k},0} \right)$ and $\left( {0,0,\dfrac{{{p^2}}}{l}} \right)$ respectively.
Therefore, A = $\left( {\dfrac{{{p^2}}}{h},0,0} \right)$, B = $\left( {0,\dfrac{{{p^2}}}{k},0} \right)$, and C = $\left( {0,0,\dfrac{{{p^2}}}{l}} \right)$
Now the area of triangle ABC is given as,
$ \Rightarrow \Delta = \sqrt {A_{xy}^2 + A_{yz}^2 + A_{zx}^2} $.................... (2)
Where, ${A_{xy}}$ is the area of projection of triangle ABC on XY–plane, ${A_{yz}}$ is area of projection of triangle ABC on YZ–plane and ${A_{zx}}$ is the area of projection of triangle ABC on ZX–plane.
Now as we know that the area of the triangle in 2-D passing from the points $\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right){\text{ and }}\left( {{x_3},{y_3}} \right)$ is half times the determinant of the vertices of the triangle so we have,
So the area of the triangle AOB is,
Where A = $\left( {\dfrac{{{p^2}}}{h},0,0} \right)$, B = $\left( {0,\dfrac{{{p^2}}}{k},0} \right)$, and O = (0, 0, 0)
$ \Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right| = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{\dfrac{{{p^2}}}{h}}&0&1 \\
0&{\dfrac{{{p^2}}}{k}}&1 \\
0&0&1
\end{array}} \right|$
Now expand this determinant we have,
$ \Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{\dfrac{{{p^2}}}{h}}&0&1 \\
0&{\dfrac{{{p^2}}}{k}}&1 \\
0&0&1
\end{array}} \right| = \dfrac{1}{2}\left| {\dfrac{{{p^2}}}{h}\left( {\dfrac{{{P^2}}}{k} - 0} \right) - 0 + 1\left( {0 - 0} \right)} \right|$
$ \Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{hk}}} \right|$
Similarly, ${A_{yz}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{kl}}} \right|$ and ${A_{zx}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{lh}}} \right|$
Now from equation (2) we have,
$ \Rightarrow \Delta = \sqrt {\dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{hk}}} \right|}^2} + \dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{kl}}} \right|}^2} + \dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{lh}}} \right|}^2}} $
$ \Rightarrow \Delta = \dfrac{{{p^4}}}{2}\sqrt {{{\left| {\dfrac{1}{{hk}}} \right|}^2} + {{\left| {\dfrac{1}{{kl}}} \right|}^2} + {{\left| {\dfrac{1}{{lh}}} \right|}^2}} $
$ \Rightarrow \Delta = \dfrac{{{p^4}}}{2}\sqrt {\left| {\dfrac{{{l^2} + {h^2} + {k^2}}}{{{h^2}\,{k^2}{l^2}}}} \right|} $
$ \Rightarrow \Delta = \dfrac{{{p^4}}}{{2hkl}}\sqrt {\left| {{l^2} + {h^2} + {k^2}} \right|} $
Now from equation 1 we have,
$ \Rightarrow \Delta = \dfrac{{{p^4}}}{{2hkl}}\sqrt {\left| {{p^2}} \right|} $
$ \Rightarrow \Delta = \dfrac{{{p^5}}}{{2hkl}}$
And the ratio of $\dfrac{{{A_{xy}}}}{{{A_{yz}}}}$ is
$ \Rightarrow \dfrac{{{A_{xy}}}}{{{A_{yz}}}} = \dfrac{{\dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{hk}}} \right|}}{{\dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{kl}}} \right|}} = \left| {\dfrac{l}{h}} \right|$
Hence options (b) and (c) are the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall that the area of the triangle in 2-D passing from the points $\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right){\text{ and }}\left( {{x_3},{y_3}} \right)$ is half times the determinant of the vertices of the triangle, i.e. $\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|$.
Complete step-by-step answer:
Given data:
A point P (h, k, l) a plane is drawn at right angles to OP to meet the coordinate axes in A, B and C.
It is also given that OP = p.
Where O is the origin (0, 0, 0)
So the distance of point P from the origin is given as,
$ \Rightarrow OP = \sqrt {{{\left( {h - 0} \right)}^2} + {{\left( {k - 0} \right)}^2}{{\left( {l - 0} \right)}^2}} = \sqrt {{h^2} + {k^2} + {l^2}} $
$ \Rightarrow p = \sqrt {{h^2} + {k^2} + {l^2}} $
$ \Rightarrow {p^2} = {h^2} + {k^2} + {l^2}$.................... (1)
Now the direction ratios of line OP is given as
$\left( {\dfrac{h}{p},\dfrac{k}{p},\dfrac{l}{p}} \right)$
Now since OP is normal to the plane so the equation of plane is given as,
$ \Rightarrow \dfrac{h}{p}x + \dfrac{k}{p}y + \dfrac{l}{p}z = p$
$ \Rightarrow hx + ky + lz = {p^2}$
Now as we know that the coordinates of triangle ABC lie on coordinates axis,
So for the coordinates of A substitute y = z = 0,
So the coordinate of A is $\left( {\dfrac{{{p^2}}}{h},0,0} \right)$
Similarly coordinates of B and C are $\left( {0,\dfrac{{{p^2}}}{k},0} \right)$ and $\left( {0,0,\dfrac{{{p^2}}}{l}} \right)$ respectively.
Therefore, A = $\left( {\dfrac{{{p^2}}}{h},0,0} \right)$, B = $\left( {0,\dfrac{{{p^2}}}{k},0} \right)$, and C = $\left( {0,0,\dfrac{{{p^2}}}{l}} \right)$
Now the area of triangle ABC is given as,
$ \Rightarrow \Delta = \sqrt {A_{xy}^2 + A_{yz}^2 + A_{zx}^2} $.................... (2)
Where, ${A_{xy}}$ is the area of projection of triangle ABC on XY–plane, ${A_{yz}}$ is area of projection of triangle ABC on YZ–plane and ${A_{zx}}$ is the area of projection of triangle ABC on ZX–plane.
Now as we know that the area of the triangle in 2-D passing from the points $\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right){\text{ and }}\left( {{x_3},{y_3}} \right)$ is half times the determinant of the vertices of the triangle so we have,
So the area of the triangle AOB is,
Where A = $\left( {\dfrac{{{p^2}}}{h},0,0} \right)$, B = $\left( {0,\dfrac{{{p^2}}}{k},0} \right)$, and O = (0, 0, 0)
$ \Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right| = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{\dfrac{{{p^2}}}{h}}&0&1 \\
0&{\dfrac{{{p^2}}}{k}}&1 \\
0&0&1
\end{array}} \right|$
Now expand this determinant we have,
$ \Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{\dfrac{{{p^2}}}{h}}&0&1 \\
0&{\dfrac{{{p^2}}}{k}}&1 \\
0&0&1
\end{array}} \right| = \dfrac{1}{2}\left| {\dfrac{{{p^2}}}{h}\left( {\dfrac{{{P^2}}}{k} - 0} \right) - 0 + 1\left( {0 - 0} \right)} \right|$
$ \Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{hk}}} \right|$
Similarly, ${A_{yz}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{kl}}} \right|$ and ${A_{zx}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{lh}}} \right|$
Now from equation (2) we have,
$ \Rightarrow \Delta = \sqrt {\dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{hk}}} \right|}^2} + \dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{kl}}} \right|}^2} + \dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{lh}}} \right|}^2}} $
$ \Rightarrow \Delta = \dfrac{{{p^4}}}{2}\sqrt {{{\left| {\dfrac{1}{{hk}}} \right|}^2} + {{\left| {\dfrac{1}{{kl}}} \right|}^2} + {{\left| {\dfrac{1}{{lh}}} \right|}^2}} $
$ \Rightarrow \Delta = \dfrac{{{p^4}}}{2}\sqrt {\left| {\dfrac{{{l^2} + {h^2} + {k^2}}}{{{h^2}\,{k^2}{l^2}}}} \right|} $
$ \Rightarrow \Delta = \dfrac{{{p^4}}}{{2hkl}}\sqrt {\left| {{l^2} + {h^2} + {k^2}} \right|} $
Now from equation 1 we have,
$ \Rightarrow \Delta = \dfrac{{{p^4}}}{{2hkl}}\sqrt {\left| {{p^2}} \right|} $
$ \Rightarrow \Delta = \dfrac{{{p^5}}}{{2hkl}}$
And the ratio of $\dfrac{{{A_{xy}}}}{{{A_{yz}}}}$ is
$ \Rightarrow \dfrac{{{A_{xy}}}}{{{A_{yz}}}} = \dfrac{{\dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{hk}}} \right|}}{{\dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{kl}}} \right|}} = \left| {\dfrac{l}{h}} \right|$
Hence options (b) and (c) are the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall that the area of the triangle in 2-D passing from the points $\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right){\text{ and }}\left( {{x_3},{y_3}} \right)$ is half times the determinant of the vertices of the triangle, i.e. $\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

