
How many three-digit numbers are divisible by 7?
Answer
601.2k+ views
Hint: Here we go through by first finding the smallest three digit number which is divisible by 7 and the largest three digit number which is divisible by 7 and make this term as AP then find out the total number of terms by the rule of AP.
Complete step-by-step answer:
As we know the smallest 3 digit number which is divisible by 7 is 105 i.e.$7 \times 15$.
And the largest 3 digit number can be found by dividing the largest 3 digit number by 7 and subtract the remaining remainder from the largest 3 digit number. i.e. $999 \div 7 = 7 \times 142 + 5$ here 5 is the remainder so subtract 5 from 999 we get, the largest number which is divisible by 7 is 994.
The first three-digit number which is divisible by 7 is 105 and the last three-digit number which is divisible by 7 is 994.
Now form an AP with first term 105 an with the common difference of 7 because by adding 7 in first the number comes out is also divisible by 7 by continuing the step we form an AP
This is an A.P in which a=105, d=7 and l=994.
Let the number of terms be n then ${T_n} = 994$.
We know that nth term of AP is written as ${T_n} = a + (n - 1)d$
By putting the values we get,
$\
\Rightarrow 994 = 105 + (n - 1)7 \\
\Rightarrow 994 - 105 = (n - 1)7 \\
\Rightarrow (n - 1) = \dfrac{{889}}{7} = 127 \\
\Rightarrow n = 127 + 1 = 128 \\
$
$\therefore n = 128$
Therefore there are 128 three-digit numbers which are divisible by 7.
Note: Whenever we face such type of question the key concept for solving the question is first find out the smallest 3 digit number which is divisible by 7 and then find out the largest 3 digit number which is divisible by 7 and then make the series of AP, 7 as a common difference and then find out the numbs in that series to get the answer
Complete step-by-step answer:
As we know the smallest 3 digit number which is divisible by 7 is 105 i.e.$7 \times 15$.
And the largest 3 digit number can be found by dividing the largest 3 digit number by 7 and subtract the remaining remainder from the largest 3 digit number. i.e. $999 \div 7 = 7 \times 142 + 5$ here 5 is the remainder so subtract 5 from 999 we get, the largest number which is divisible by 7 is 994.
The first three-digit number which is divisible by 7 is 105 and the last three-digit number which is divisible by 7 is 994.
Now form an AP with first term 105 an with the common difference of 7 because by adding 7 in first the number comes out is also divisible by 7 by continuing the step we form an AP
This is an A.P in which a=105, d=7 and l=994.
Let the number of terms be n then ${T_n} = 994$.
We know that nth term of AP is written as ${T_n} = a + (n - 1)d$
By putting the values we get,
$\
\Rightarrow 994 = 105 + (n - 1)7 \\
\Rightarrow 994 - 105 = (n - 1)7 \\
\Rightarrow (n - 1) = \dfrac{{889}}{7} = 127 \\
\Rightarrow n = 127 + 1 = 128 \\
$
$\therefore n = 128$
Therefore there are 128 three-digit numbers which are divisible by 7.
Note: Whenever we face such type of question the key concept for solving the question is first find out the smallest 3 digit number which is divisible by 7 and then find out the largest 3 digit number which is divisible by 7 and then make the series of AP, 7 as a common difference and then find out the numbs in that series to get the answer
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

