
There are n dice with f faces marked from 1 to f. If these are thrown at random, what is the chance that the sum of the numbers exhibited shall be equal to p?
Answer
599.4k+ views
Hint:To solve the question we have to calculate the number of possible outcomes when the n dice with f faces marked from 1 to f, are thrown randomly. To solve further, calculate the number of ways the sum of numbers exhibited when the n dice thrown randomly be equal to p. To calculate the chance the sum of numbers exhibited shall be equal to p, calculate the probability of the sum of numbers exhibited to be equal to p, for the obtained number of possible outcomes when the n dice are thrown randomly.
Complete step-by-step answer:
Given
The number of dices = n
The number of faces in each dice = f
We know,
Number of possible outcomes when dices are randomly thrown =${Number of faces}^{Number of dices}$.
Thus, the number of possible outcomes from the given information of dices \[={{f}^{n}}\]
The sum of numbers exhibited when dices are thrown randomly \[=({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}}).({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})......({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})\] \[n\] times. ( \[\because n\] dices)
\[={{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}\]
The number of ways the sum of numbers exhibited shall be equal to \[p\] when dices are thrown randomly = Coefficient of \[{{x}^{p}}\] in the expansion \[{{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}\]
We know,
The formula for the sum of geometric progression \[{{a}^{1}}+{{a}^{2}}+.....+{{a}^{f}}\]is given by \[=\dfrac{a(1-{{a}^{f}})}{1-a}\]
\[\Rightarrow {{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}={{\left( \dfrac{x(1-{{x}^{f}})}{1-x} \right)}^{n}}\]
\[=\dfrac{{{x}^{n}}{{(1-{{x}^{f}})}^{n}}}{{{(1-x)}^{n}}}\]
\[={{x}^{n}}{{(1-{{x}^{f}})}^{n}}{{(1-x)}^{-n}}\]
\[\Rightarrow \] Coefficient of \[{{x}^{p}}=\] Coefficient of \[{{x}^{p-n}}\] in \[{{(1-{{x}^{f}})}^{n}}{{(1-x)}^{-n}}\]
We know the expansion formulae are
\[{{(1-x)}^{n}}=1-nx+\dfrac{n(n-1)}{2!}{{x}^{2}}-........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}{{x}^{r}}+.....\infty \]
\[{{(1-x)}^{-n}}=1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+........+\dfrac{n(n+1)(n+2)....(n+r-1)}{r!}{{x}^{r}}+.....\infty \] ……. (1)
\[\Rightarrow {{(1-{{x}^{f}})}^{n}}=1-n{{x}^{f}}+\dfrac{n(n-1)}{2!}{{x}^{2f}}-........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}{{x}^{rf}}+.....\infty \] ……. (2)
By multiplying (1) and (2) we get the coefficient of \[{{x}^{p-n}}\]
Coefficient of \[{{x}^{r}}\] in \[{{(1-x)}^{-n}}\]\[=\dfrac{n(n+1)(n+2)....(n+r-1)}{r!}\]
Coefficient of \[{{x}^{p-n}}\] in \[{{(1-x)}^{-n}}\] \[=\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}\]
Thus, the coefficient of \[{{x}^{p-n}}\] in the product of (1) and (2)
\[=\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}-n.\dfrac{n(n-1)(n-2)....(p-f+1)}{(p-n-f)!}+...\]
\[..........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}.\dfrac{n(n-1)(n-2)....(p-rf-1)}{(p-n-rf)!}+...\infty \]
The chance the sum of numbers exhibited shall be equal to \[p=\]\[\dfrac{Coefficientof{{x}^{p}}}{{{f}^{n}}}\]
∴ The required probability of the sum of numbers exhibited be equal to \[p\]
\[=\dfrac{\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}-n.\dfrac{n(n-1)(n-2)....(p-f+1)}{(p-n-f)!}+...+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}.\dfrac{n(n-1)(n-2)....(p-rf-1)}{(p-n-rf)!}+...\infty }{{{f}^{n}}}\]
Note: To solve the question we have to apply the sum of geometric progression formulas. We have to analyze that the sum of numbers exhibited is equal to the coefficient of \[{{x}^{p}}\]. While solving after a certain step, find the coefficient of \[{{x}^{p-n}}\] instead of coefficient \[{{x}^{p}}\]which will ease the procedure of solving.
Complete step-by-step answer:
Given
The number of dices = n
The number of faces in each dice = f
We know,
Number of possible outcomes when dices are randomly thrown =${Number of faces}^{Number of dices}$.
Thus, the number of possible outcomes from the given information of dices \[={{f}^{n}}\]
The sum of numbers exhibited when dices are thrown randomly \[=({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}}).({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})......({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})\] \[n\] times. ( \[\because n\] dices)
\[={{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}\]
The number of ways the sum of numbers exhibited shall be equal to \[p\] when dices are thrown randomly = Coefficient of \[{{x}^{p}}\] in the expansion \[{{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}\]
We know,
The formula for the sum of geometric progression \[{{a}^{1}}+{{a}^{2}}+.....+{{a}^{f}}\]is given by \[=\dfrac{a(1-{{a}^{f}})}{1-a}\]
\[\Rightarrow {{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}={{\left( \dfrac{x(1-{{x}^{f}})}{1-x} \right)}^{n}}\]
\[=\dfrac{{{x}^{n}}{{(1-{{x}^{f}})}^{n}}}{{{(1-x)}^{n}}}\]
\[={{x}^{n}}{{(1-{{x}^{f}})}^{n}}{{(1-x)}^{-n}}\]
\[\Rightarrow \] Coefficient of \[{{x}^{p}}=\] Coefficient of \[{{x}^{p-n}}\] in \[{{(1-{{x}^{f}})}^{n}}{{(1-x)}^{-n}}\]
We know the expansion formulae are
\[{{(1-x)}^{n}}=1-nx+\dfrac{n(n-1)}{2!}{{x}^{2}}-........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}{{x}^{r}}+.....\infty \]
\[{{(1-x)}^{-n}}=1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+........+\dfrac{n(n+1)(n+2)....(n+r-1)}{r!}{{x}^{r}}+.....\infty \] ……. (1)
\[\Rightarrow {{(1-{{x}^{f}})}^{n}}=1-n{{x}^{f}}+\dfrac{n(n-1)}{2!}{{x}^{2f}}-........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}{{x}^{rf}}+.....\infty \] ……. (2)
By multiplying (1) and (2) we get the coefficient of \[{{x}^{p-n}}\]
Coefficient of \[{{x}^{r}}\] in \[{{(1-x)}^{-n}}\]\[=\dfrac{n(n+1)(n+2)....(n+r-1)}{r!}\]
Coefficient of \[{{x}^{p-n}}\] in \[{{(1-x)}^{-n}}\] \[=\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}\]
Thus, the coefficient of \[{{x}^{p-n}}\] in the product of (1) and (2)
\[=\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}-n.\dfrac{n(n-1)(n-2)....(p-f+1)}{(p-n-f)!}+...\]
\[..........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}.\dfrac{n(n-1)(n-2)....(p-rf-1)}{(p-n-rf)!}+...\infty \]
The chance the sum of numbers exhibited shall be equal to \[p=\]\[\dfrac{Coefficientof{{x}^{p}}}{{{f}^{n}}}\]
∴ The required probability of the sum of numbers exhibited be equal to \[p\]
\[=\dfrac{\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}-n.\dfrac{n(n-1)(n-2)....(p-f+1)}{(p-n-f)!}+...+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}.\dfrac{n(n-1)(n-2)....(p-rf-1)}{(p-n-rf)!}+...\infty }{{{f}^{n}}}\]
Note: To solve the question we have to apply the sum of geometric progression formulas. We have to analyze that the sum of numbers exhibited is equal to the coefficient of \[{{x}^{p}}\]. While solving after a certain step, find the coefficient of \[{{x}^{p-n}}\] instead of coefficient \[{{x}^{p}}\]which will ease the procedure of solving.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

