
There are n dice with f faces marked from 1 to f. If these are thrown at random, what is the chance that the sum of the numbers exhibited shall be equal to p?
Answer
515.7k+ views
Hint:To solve the question we have to calculate the number of possible outcomes when the n dice with f faces marked from 1 to f, are thrown randomly. To solve further, calculate the number of ways the sum of numbers exhibited when the n dice thrown randomly be equal to p. To calculate the chance the sum of numbers exhibited shall be equal to p, calculate the probability of the sum of numbers exhibited to be equal to p, for the obtained number of possible outcomes when the n dice are thrown randomly.
Complete step-by-step answer:
Given
The number of dices = n
The number of faces in each dice = f
We know,
Number of possible outcomes when dices are randomly thrown =${Number of faces}^{Number of dices}$.
Thus, the number of possible outcomes from the given information of dices \[={{f}^{n}}\]
The sum of numbers exhibited when dices are thrown randomly \[=({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}}).({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})......({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})\] \[n\] times. ( \[\because n\] dices)
\[={{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}\]
The number of ways the sum of numbers exhibited shall be equal to \[p\] when dices are thrown randomly = Coefficient of \[{{x}^{p}}\] in the expansion \[{{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}\]
We know,
The formula for the sum of geometric progression \[{{a}^{1}}+{{a}^{2}}+.....+{{a}^{f}}\]is given by \[=\dfrac{a(1-{{a}^{f}})}{1-a}\]
\[\Rightarrow {{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}={{\left( \dfrac{x(1-{{x}^{f}})}{1-x} \right)}^{n}}\]
\[=\dfrac{{{x}^{n}}{{(1-{{x}^{f}})}^{n}}}{{{(1-x)}^{n}}}\]
\[={{x}^{n}}{{(1-{{x}^{f}})}^{n}}{{(1-x)}^{-n}}\]
\[\Rightarrow \] Coefficient of \[{{x}^{p}}=\] Coefficient of \[{{x}^{p-n}}\] in \[{{(1-{{x}^{f}})}^{n}}{{(1-x)}^{-n}}\]
We know the expansion formulae are
\[{{(1-x)}^{n}}=1-nx+\dfrac{n(n-1)}{2!}{{x}^{2}}-........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}{{x}^{r}}+.....\infty \]
\[{{(1-x)}^{-n}}=1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+........+\dfrac{n(n+1)(n+2)....(n+r-1)}{r!}{{x}^{r}}+.....\infty \] ……. (1)
\[\Rightarrow {{(1-{{x}^{f}})}^{n}}=1-n{{x}^{f}}+\dfrac{n(n-1)}{2!}{{x}^{2f}}-........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}{{x}^{rf}}+.....\infty \] ……. (2)
By multiplying (1) and (2) we get the coefficient of \[{{x}^{p-n}}\]
Coefficient of \[{{x}^{r}}\] in \[{{(1-x)}^{-n}}\]\[=\dfrac{n(n+1)(n+2)....(n+r-1)}{r!}\]
Coefficient of \[{{x}^{p-n}}\] in \[{{(1-x)}^{-n}}\] \[=\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}\]
Thus, the coefficient of \[{{x}^{p-n}}\] in the product of (1) and (2)
\[=\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}-n.\dfrac{n(n-1)(n-2)....(p-f+1)}{(p-n-f)!}+...\]
\[..........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}.\dfrac{n(n-1)(n-2)....(p-rf-1)}{(p-n-rf)!}+...\infty \]
The chance the sum of numbers exhibited shall be equal to \[p=\]\[\dfrac{Coefficientof{{x}^{p}}}{{{f}^{n}}}\]
∴ The required probability of the sum of numbers exhibited be equal to \[p\]
\[=\dfrac{\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}-n.\dfrac{n(n-1)(n-2)....(p-f+1)}{(p-n-f)!}+...+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}.\dfrac{n(n-1)(n-2)....(p-rf-1)}{(p-n-rf)!}+...\infty }{{{f}^{n}}}\]
Note: To solve the question we have to apply the sum of geometric progression formulas. We have to analyze that the sum of numbers exhibited is equal to the coefficient of \[{{x}^{p}}\]. While solving after a certain step, find the coefficient of \[{{x}^{p-n}}\] instead of coefficient \[{{x}^{p}}\]which will ease the procedure of solving.
Complete step-by-step answer:
Given
The number of dices = n
The number of faces in each dice = f
We know,
Number of possible outcomes when dices are randomly thrown =${Number of faces}^{Number of dices}$.
Thus, the number of possible outcomes from the given information of dices \[={{f}^{n}}\]
The sum of numbers exhibited when dices are thrown randomly \[=({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}}).({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})......({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})\] \[n\] times. ( \[\because n\] dices)
\[={{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}\]
The number of ways the sum of numbers exhibited shall be equal to \[p\] when dices are thrown randomly = Coefficient of \[{{x}^{p}}\] in the expansion \[{{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}\]
We know,
The formula for the sum of geometric progression \[{{a}^{1}}+{{a}^{2}}+.....+{{a}^{f}}\]is given by \[=\dfrac{a(1-{{a}^{f}})}{1-a}\]
\[\Rightarrow {{({{x}^{1}}+{{x}^{2}}+.....+{{x}^{f}})}^{n}}={{\left( \dfrac{x(1-{{x}^{f}})}{1-x} \right)}^{n}}\]
\[=\dfrac{{{x}^{n}}{{(1-{{x}^{f}})}^{n}}}{{{(1-x)}^{n}}}\]
\[={{x}^{n}}{{(1-{{x}^{f}})}^{n}}{{(1-x)}^{-n}}\]
\[\Rightarrow \] Coefficient of \[{{x}^{p}}=\] Coefficient of \[{{x}^{p-n}}\] in \[{{(1-{{x}^{f}})}^{n}}{{(1-x)}^{-n}}\]
We know the expansion formulae are
\[{{(1-x)}^{n}}=1-nx+\dfrac{n(n-1)}{2!}{{x}^{2}}-........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}{{x}^{r}}+.....\infty \]
\[{{(1-x)}^{-n}}=1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+........+\dfrac{n(n+1)(n+2)....(n+r-1)}{r!}{{x}^{r}}+.....\infty \] ……. (1)
\[\Rightarrow {{(1-{{x}^{f}})}^{n}}=1-n{{x}^{f}}+\dfrac{n(n-1)}{2!}{{x}^{2f}}-........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}{{x}^{rf}}+.....\infty \] ……. (2)
By multiplying (1) and (2) we get the coefficient of \[{{x}^{p-n}}\]
Coefficient of \[{{x}^{r}}\] in \[{{(1-x)}^{-n}}\]\[=\dfrac{n(n+1)(n+2)....(n+r-1)}{r!}\]
Coefficient of \[{{x}^{p-n}}\] in \[{{(1-x)}^{-n}}\] \[=\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}\]
Thus, the coefficient of \[{{x}^{p-n}}\] in the product of (1) and (2)
\[=\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}-n.\dfrac{n(n-1)(n-2)....(p-f+1)}{(p-n-f)!}+...\]
\[..........+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}.\dfrac{n(n-1)(n-2)....(p-rf-1)}{(p-n-rf)!}+...\infty \]
The chance the sum of numbers exhibited shall be equal to \[p=\]\[\dfrac{Coefficientof{{x}^{p}}}{{{f}^{n}}}\]
∴ The required probability of the sum of numbers exhibited be equal to \[p\]
\[=\dfrac{\dfrac{n(n+1)(n+2)....(p-1)}{(p-n)!}-n.\dfrac{n(n-1)(n-2)....(p-f+1)}{(p-n-f)!}+...+{{(-1)}^{r}}\dfrac{n(n-1)(n-2)....(n-r+1)}{r!}.\dfrac{n(n-1)(n-2)....(p-rf-1)}{(p-n-rf)!}+...\infty }{{{f}^{n}}}\]
Note: To solve the question we have to apply the sum of geometric progression formulas. We have to analyze that the sum of numbers exhibited is equal to the coefficient of \[{{x}^{p}}\]. While solving after a certain step, find the coefficient of \[{{x}^{p-n}}\] instead of coefficient \[{{x}^{p}}\]which will ease the procedure of solving.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
