
The Van der Waals equation of state for some gases can be expressed as:
$\left( P+\dfrac{a}{{{V}^{2}}} \right)\left( V-b \right)=RT$
Where P is the pressure, V is the molar volume, and T is the absolute temperature of the given sample of gas and a, b and R are constants. The dimension of constant b are
(a). $\left[ M{{L}^{5}}{{T}^{-2}} \right]$
(b). $\left[ M{{L}^{-1}}{{T}^{-2}} \right]$
(c). $\left[ {{L}^{3}} \right]$
(d). $\left[ {{L}^{6}} \right]$
Answer
591.3k+ views
- Hint: To find the answer of this question we need to apply the concept of dimensional correctness of an equation. We can add or subtract two quantities only if the units of the two quantities are the same i.e. dimension of the quantities need to be the same. Applying this concept to the above equation we can find the dimension of the constant b.
Complete step-by-step solution -
For an equation to be correct, the equation should be dimensionally correct. i.e. the quantities on both sides of the equation should have the same dimension or the quantities related with each other by addition of subtraction should have the same dimension.
In the given equation we have in the left-hand side, we have that the constant b is related to V with subtraction. For this to be right the dimension of b should be the same as that of V.
Now, here, V is the volume of the gas. So, the dimension of constant b is equal to that of the dimension of volume.
Dimension of volume is given as $\left[ {{L}^{3}} \right]$
So, dimension of constant b will be $\left[ {{L}^{3}} \right]$
The correct option is (C).
Note: We can also find the dimension of applying this concept.
Here, the dimension of $\dfrac{a}{{{V}^{2}}}$ will be the same as the dimension of P.
Now, dimension of P is $\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]$
Dimension of V is $\left[ {{L}^{3}} \right]$
So, dimension of ${{V}^{2}}$ will be $\left[ {{L}^{6}} \right]$
So, dimension of a will be, $\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]\times \left[ {{L}^{6}} \right]=\left[ {{M}^{1}}{{L}^{5}}{{T}^{-2}} \right]$
We also find the dimension by simplifying the given equation and then equating the dimension of each quantity related with addition and subtraction in both sides of the equation.
Complete step-by-step solution -
For an equation to be correct, the equation should be dimensionally correct. i.e. the quantities on both sides of the equation should have the same dimension or the quantities related with each other by addition of subtraction should have the same dimension.
In the given equation we have in the left-hand side, we have that the constant b is related to V with subtraction. For this to be right the dimension of b should be the same as that of V.
Now, here, V is the volume of the gas. So, the dimension of constant b is equal to that of the dimension of volume.
Dimension of volume is given as $\left[ {{L}^{3}} \right]$
So, dimension of constant b will be $\left[ {{L}^{3}} \right]$
The correct option is (C).
Note: We can also find the dimension of applying this concept.
Here, the dimension of $\dfrac{a}{{{V}^{2}}}$ will be the same as the dimension of P.
Now, dimension of P is $\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]$
Dimension of V is $\left[ {{L}^{3}} \right]$
So, dimension of ${{V}^{2}}$ will be $\left[ {{L}^{6}} \right]$
So, dimension of a will be, $\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]\times \left[ {{L}^{6}} \right]=\left[ {{M}^{1}}{{L}^{5}}{{T}^{-2}} \right]$
We also find the dimension by simplifying the given equation and then equating the dimension of each quantity related with addition and subtraction in both sides of the equation.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

