
The value of the indefinite integral \[\int{32{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\] is equal to:
\[\left( \text{a} \right)\text{ }8{{x}^{4}}{{\left( \log x \right)}^{2}}+C\]
\[\left( \text{b} \right)\text{ }{{x}^{4}}\left[ 8{{\left( \log x \right)}^{2}}-4\log x+1 \right]+C\]
\[\left( \text{c} \right)\text{ }{{x}^{4}}8{{\left( \log x \right)}^{2}}-4\log x+C\]
\[\left( \text{d} \right)\text{ }{{x}^{3}}{{\left( \log x \right)}^{2}}+2\log x+C\]
Answer
584.4k+ views
Hint: To solve the given question, we will first assume that the value of the given integral is I. Then, we will find the value of \[\int{{{x}^{3}}\log xdx}\] using the method of by – parts. According to the method of by – parts, we have \[\int{u.v=v\int{udx}-\int{\dfrac{dv}{dx}\int{u{{\left( dx \right)}^{2}}.}}}\] In our case, we will take \[u={{x}^{3}}\] and v = log x. After finding this, we will find the value of \[\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\] using by – parts. In this, we will take \[u={{x}^{3}}\log x\] and v = log x. After finding the value of \[\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\] we will put its value in I and then we will simplify to get the answer.
Complete step-by-step answer:
To start with, we will assume that the value of the given indefinite integral is I. Thus, we will get the following equation
\[I=\int{32{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\]
\[\Rightarrow I=32\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx.....\left( i \right)}\]
Now, the first thing we are going to do is to find the value of \[\int{{{x}^{3}}\log xdx.}\] Let its value be A. Thus, we have,
\[A=\int{{{x}^{3}}\log xdx.....\left( ii \right)}\]
Now, we will find the value of A by using it by parts. By – parts is the method of integration when the terms inside the integration are in multiplication. Thus, we have,
\[\int{u.vdx=v\int{udx-\int{\dfrac{dv}{dx}\int{u{{\left( dx \right)}^{2}}}}}}\]
In our case, we will take \[u={{x}^{3}}\] and v = log x. Thus, we will get,
\[\int{{{x}^{3}}\log xdx=\log x\int{{{x}^{3}}dx-\int{\dfrac{d}{dx}\left( \log x \right)\int{{{x}^{3}}{{\left( dx \right)}^{2}}}}}}\]
The value of \[\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}\] and differentiation of log x is \[\dfrac{1}{x}.\] Thus, we have,
\[\int{{{x}^{3}}\log xdx=\dfrac{{{x}^{4}}\log x}{4}-\int{\dfrac{1}{x}\left[ \dfrac{{{x}^{4}}}{4} \right]dx+{{C}_{1}}}}\]
\[\Rightarrow \int{{{x}^{3}}\log xdx=\dfrac{{{x}^{4}}\log x}{4}-\int{\dfrac{{{x}^{3}}}{4}dx+{{C}_{1}}}}\]
\[\Rightarrow \int{{{x}^{3}}\log xdx=\dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{4\times 4}+{{C}_{1}}}\]
\[\Rightarrow \int{{{x}^{3}}\log xdx=\dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{16}+{{C}_{1}}.....\left( iii \right)}\]
Now, we will find the value of \[\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\] by the help of by – parts method. Here, we will take \[u={{x}^{3}}\log x\] and v = log x. Thus, we have,
\[\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx=\log x\int{{{x}^{3}}\log xdx}-\int{\dfrac{d}{dx}\left( \log x \right)}\int{{{x}^{3}}\log x{{\left( dx \right)}^{2}}}}\]
Now, we will put the value of \[\int{{{x}^{3}}\log xdx}\] from (iii) to the above equation. Thus, we will get,
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\log x\left[ \dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{16} \right]-\int{\dfrac{1}{x}\left[ \dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{16} \right]dx+C}\]
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}{{\left( \log x \right)}^{2}}}{4}-\dfrac{{{x}^{4}}\log x}{16}-\int{\dfrac{{{x}^{3}}\log xdx}{4}}+\int{\dfrac{{{x}^{3}}}{16}dx}+C\]
Now, we will put the value of \[\int{{{x}^{3}}\log xdx}\] in the above equation. Thus, we will get,
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}{{\left( \log x \right)}^{2}}}{4}-\dfrac{{{x}^{4}}\log x}{16}-\dfrac{1}{4}\left[ \dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{16} \right]+\dfrac{{{x}^{4}}}{4\times 16}+C\]
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}}{4}\left[ {{\left( \log x \right)}^{2}}-\dfrac{\log x}{4} \right]-\dfrac{{{x}^{4}}\log x}{16}+\dfrac{{{x}^{4}}}{64}+\dfrac{{{x}^{4}}}{64}+C\]
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}{{\left( \log x \right)}^{2}}}{4}-\dfrac{{{x}^{4}}\log x}{8}+\dfrac{{{x}^{4}}}{32}+C\]
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}}{32}\left[ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right]+C.....\left( iv \right)\]
On putting the values of \[\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\] from (iv) to (i), we will get,
\[I=32\left[ \dfrac{{{x}^{4}}}{32}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]+C\]
\[I={{x}^{4}}\left[ 8{{\left( \log x \right)}^{2}}-4\log x+1 \right]+C\]
Hence, option (b) is the right answer.
Note: We can also solve the question by differentiating each option and the option whose differentiation will be equal to \[32{{x}^{3}}{{\left( \log x \right)}^{2}}\] will be the answer. For instance, the differentiation of the term in option (b) is:
\[\dfrac{d}{dx}\left[ {{x}^{4}}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]=8\dfrac{d}{dx}\left[ {{x}^{4}}{{\left( \log x \right)}^{2}} \right]-4\dfrac{d}{dx}\left[ {{x}^{4}}\log x \right]+\dfrac{d}{dx}{{x}^{4}}\]
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]=8\left[ 4{{x}^{3}}{{\left( \log x \right)}^{2}}+\dfrac{2{{x}^{4}}}{x}\log x \right]-4\left[ 4{{x}^{3}}\log x+\dfrac{{{x}^{4}}}{x} \right]+4{{x}^{3}}\]
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]=32{{x}^{3}}{{\left( \log x \right)}^{2}}+16{{x}^{3}}\log x-16{{x}^{3}}\log x-4{{x}^{3}}+4{{x}^{3}}\]
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]=32{{x}^{3}}{{\left( \log x \right)}^{2}}\]
Hence, we get the right answer as option (b).
Complete step-by-step answer:
To start with, we will assume that the value of the given indefinite integral is I. Thus, we will get the following equation
\[I=\int{32{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\]
\[\Rightarrow I=32\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx.....\left( i \right)}\]
Now, the first thing we are going to do is to find the value of \[\int{{{x}^{3}}\log xdx.}\] Let its value be A. Thus, we have,
\[A=\int{{{x}^{3}}\log xdx.....\left( ii \right)}\]
Now, we will find the value of A by using it by parts. By – parts is the method of integration when the terms inside the integration are in multiplication. Thus, we have,
\[\int{u.vdx=v\int{udx-\int{\dfrac{dv}{dx}\int{u{{\left( dx \right)}^{2}}}}}}\]
In our case, we will take \[u={{x}^{3}}\] and v = log x. Thus, we will get,
\[\int{{{x}^{3}}\log xdx=\log x\int{{{x}^{3}}dx-\int{\dfrac{d}{dx}\left( \log x \right)\int{{{x}^{3}}{{\left( dx \right)}^{2}}}}}}\]
The value of \[\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}\] and differentiation of log x is \[\dfrac{1}{x}.\] Thus, we have,
\[\int{{{x}^{3}}\log xdx=\dfrac{{{x}^{4}}\log x}{4}-\int{\dfrac{1}{x}\left[ \dfrac{{{x}^{4}}}{4} \right]dx+{{C}_{1}}}}\]
\[\Rightarrow \int{{{x}^{3}}\log xdx=\dfrac{{{x}^{4}}\log x}{4}-\int{\dfrac{{{x}^{3}}}{4}dx+{{C}_{1}}}}\]
\[\Rightarrow \int{{{x}^{3}}\log xdx=\dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{4\times 4}+{{C}_{1}}}\]
\[\Rightarrow \int{{{x}^{3}}\log xdx=\dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{16}+{{C}_{1}}.....\left( iii \right)}\]
Now, we will find the value of \[\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\] by the help of by – parts method. Here, we will take \[u={{x}^{3}}\log x\] and v = log x. Thus, we have,
\[\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx=\log x\int{{{x}^{3}}\log xdx}-\int{\dfrac{d}{dx}\left( \log x \right)}\int{{{x}^{3}}\log x{{\left( dx \right)}^{2}}}}\]
Now, we will put the value of \[\int{{{x}^{3}}\log xdx}\] from (iii) to the above equation. Thus, we will get,
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\log x\left[ \dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{16} \right]-\int{\dfrac{1}{x}\left[ \dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{16} \right]dx+C}\]
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}{{\left( \log x \right)}^{2}}}{4}-\dfrac{{{x}^{4}}\log x}{16}-\int{\dfrac{{{x}^{3}}\log xdx}{4}}+\int{\dfrac{{{x}^{3}}}{16}dx}+C\]
Now, we will put the value of \[\int{{{x}^{3}}\log xdx}\] in the above equation. Thus, we will get,
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}{{\left( \log x \right)}^{2}}}{4}-\dfrac{{{x}^{4}}\log x}{16}-\dfrac{1}{4}\left[ \dfrac{{{x}^{4}}\log x}{4}-\dfrac{{{x}^{4}}}{16} \right]+\dfrac{{{x}^{4}}}{4\times 16}+C\]
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}}{4}\left[ {{\left( \log x \right)}^{2}}-\dfrac{\log x}{4} \right]-\dfrac{{{x}^{4}}\log x}{16}+\dfrac{{{x}^{4}}}{64}+\dfrac{{{x}^{4}}}{64}+C\]
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}{{\left( \log x \right)}^{2}}}{4}-\dfrac{{{x}^{4}}\log x}{8}+\dfrac{{{x}^{4}}}{32}+C\]
\[\Rightarrow \int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}=\dfrac{{{x}^{4}}}{32}\left[ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right]+C.....\left( iv \right)\]
On putting the values of \[\int{{{x}^{3}}{{\left( \log x \right)}^{2}}dx}\] from (iv) to (i), we will get,
\[I=32\left[ \dfrac{{{x}^{4}}}{32}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]+C\]
\[I={{x}^{4}}\left[ 8{{\left( \log x \right)}^{2}}-4\log x+1 \right]+C\]
Hence, option (b) is the right answer.
Note: We can also solve the question by differentiating each option and the option whose differentiation will be equal to \[32{{x}^{3}}{{\left( \log x \right)}^{2}}\] will be the answer. For instance, the differentiation of the term in option (b) is:
\[\dfrac{d}{dx}\left[ {{x}^{4}}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]=8\dfrac{d}{dx}\left[ {{x}^{4}}{{\left( \log x \right)}^{2}} \right]-4\dfrac{d}{dx}\left[ {{x}^{4}}\log x \right]+\dfrac{d}{dx}{{x}^{4}}\]
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]=8\left[ 4{{x}^{3}}{{\left( \log x \right)}^{2}}+\dfrac{2{{x}^{4}}}{x}\log x \right]-4\left[ 4{{x}^{3}}\log x+\dfrac{{{x}^{4}}}{x} \right]+4{{x}^{3}}\]
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]=32{{x}^{3}}{{\left( \log x \right)}^{2}}+16{{x}^{3}}\log x-16{{x}^{3}}\log x-4{{x}^{3}}+4{{x}^{3}}\]
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}\left\{ 8{{\left( \log x \right)}^{2}}-4\left( \log x \right)+1 \right\} \right]=32{{x}^{3}}{{\left( \log x \right)}^{2}}\]
Hence, we get the right answer as option (b).
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

