
The value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is _______.
Answer
579.6k+ views
Hint: Since the trigonometric function consists of $\sin {\theta}$ and $\cos {\theta}$, use the sine-cosine trigonometric relations to simplify the given function.
i.e. $\text{sin}\left( \text{A+B} \right)\text{=sinA}\text{.cosB + cosA}\text{.sinB}$
Then substitute the standard values of given angles in the equation to get an answer.
Complete step-by-step solution:
In the given question, we have:
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
By using identity, $\text{sin}\left( \text{A+B} \right)\text{=sinA}\text{.cosB + cosA}\text{.sinB}$
We can write equation (1) as:
$\begin{align}
& \text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\text{ sin}\left( \text{3}{{0}^{\circ }}+{{60}^{\circ }} \right) \\
& =\text{ sin}{{90}^{\circ }}
\end{align}$
Since $\text{sin}{{90}^{\circ }}=1$;
Therefore,
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\text{ 1}$
Hence the value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is 1.
Note: This is another way to calculate the given trigonometric function. We know that the expression contains all standard angles, so we can directly put the values of standard angles in the equation and solve it to get the answer, i.e.
$\text{sin}{{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\text{sin3}{{0}^{\circ }}\text{= cos}{{60}^{\circ }}=\dfrac{1}{2}$
The table below shows the values of standard angles:
Therefore, using the above values and substituting in the given expression, we get:
$\begin{align}
& \text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& =\dfrac{3}{4}+\dfrac{1}{4} \\
& =\dfrac{4}{4} \\
& =1
\end{align}$
Yet, we can solve the given expression by using more complex identities:
$\left\{ \begin{align}
& 2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) \\
& 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) \\
\end{align} \right\}$
In the given question, we have:
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
By multiplying and dividing the whole equation by 2, we get:
\[\Rightarrow \dfrac{1}{2}\left( \text{2sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ 2sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }} \right)\]
Now, by applying the identities stated above, we can write the expression as:
\[\Rightarrow \dfrac{1}{2}\left( \begin{align}
& \left( \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right)+\text{sin}\left( {{60}^{\circ }}-{{30}^{\circ }} \right) \right) \\
& +\left( \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right)-\text{sin}\left( {{60}^{\circ }}-{{30}^{\circ }} \right) \right) \\
\end{align} \right)\]
Now, solving the equations, we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 2\text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right) \right) \\
& \Rightarrow \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right) \\
& \Rightarrow \sin {{90}^{\circ }} \\
& \Rightarrow 1 \\
\end{align}\]
Hence, we get the same result, i.e. the value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is 1.
One more way to solve this expression is to convert sine into cosine and vice-versa, i.e.
For the given expression: $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
We can convert \[\cos {{30}^{\circ }}\Rightarrow \sin \left( {{90}^{\circ }}-{{30}^{\circ }} \right)\] and $\sin {{30}^{\circ }}\Rightarrow \cos \left( {{90}^{\circ }}-{{30}^{\circ }} \right)$
So, we get:
$\Rightarrow \text{sin}{{60}^{\circ }}\sin {{60}^{\circ }}+\text{ cos6}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
We can solve this expression putting the values for standard angles. So, we get:
$\begin{align}
& \Rightarrow \left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4} \\
& \Rightarrow 1 \\
\end{align}$
Hence, we can say that whichever method we try, we are getting the same value. Therefore, there are various methods to solve a trigonometric equation.
i.e. $\text{sin}\left( \text{A+B} \right)\text{=sinA}\text{.cosB + cosA}\text{.sinB}$
Then substitute the standard values of given angles in the equation to get an answer.
Complete step-by-step solution:
In the given question, we have:
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
By using identity, $\text{sin}\left( \text{A+B} \right)\text{=sinA}\text{.cosB + cosA}\text{.sinB}$
We can write equation (1) as:
$\begin{align}
& \text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\text{ sin}\left( \text{3}{{0}^{\circ }}+{{60}^{\circ }} \right) \\
& =\text{ sin}{{90}^{\circ }}
\end{align}$
Since $\text{sin}{{90}^{\circ }}=1$;
Therefore,
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\text{ 1}$
Hence the value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is 1.
Note: This is another way to calculate the given trigonometric function. We know that the expression contains all standard angles, so we can directly put the values of standard angles in the equation and solve it to get the answer, i.e.
$\text{sin}{{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\text{sin3}{{0}^{\circ }}\text{= cos}{{60}^{\circ }}=\dfrac{1}{2}$
The table below shows the values of standard angles:
| \[\angle A\] | ${{0}^{\circ }}$ | ${{30}^{\circ }}$ | ${{45}^{\circ }}$ | ${{60}^{\circ }}$ | ${{90}^{\circ }}$ |
| $\sin A$ | 0 | $\dfrac{1}{2}$ | \[\dfrac{1}{\sqrt{2}}\] | $\dfrac{\sqrt{3}}{2}$ | 1 |
| $\cos A$ | 1 | $\dfrac{\sqrt{3}}{2}$ | \[\dfrac{1}{\sqrt{2}}\] | $\dfrac{1}{2}$ | 0 |
| $\tan A$ | 0 | \[\dfrac{1}{\sqrt{3}}\] | 1 | $\sqrt{3}$ | Not defined |
| $\text{cosec }A$ | Not defined | 2 | \[\sqrt{2}\] | \[\dfrac{2}{\sqrt{3}}\] | 1 |
| $\sec A$ | 1 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{2}\] | 2 | Not defined |
| $\cot A$ | Not defined | $\sqrt{3}$ | 1 | \[\dfrac{1}{\sqrt{3}}\] | 0 |
Therefore, using the above values and substituting in the given expression, we get:
$\begin{align}
& \text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& =\dfrac{3}{4}+\dfrac{1}{4} \\
& =\dfrac{4}{4} \\
& =1
\end{align}$
Yet, we can solve the given expression by using more complex identities:
$\left\{ \begin{align}
& 2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) \\
& 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) \\
\end{align} \right\}$
In the given question, we have:
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
By multiplying and dividing the whole equation by 2, we get:
\[\Rightarrow \dfrac{1}{2}\left( \text{2sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ 2sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }} \right)\]
Now, by applying the identities stated above, we can write the expression as:
\[\Rightarrow \dfrac{1}{2}\left( \begin{align}
& \left( \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right)+\text{sin}\left( {{60}^{\circ }}-{{30}^{\circ }} \right) \right) \\
& +\left( \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right)-\text{sin}\left( {{60}^{\circ }}-{{30}^{\circ }} \right) \right) \\
\end{align} \right)\]
Now, solving the equations, we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 2\text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right) \right) \\
& \Rightarrow \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right) \\
& \Rightarrow \sin {{90}^{\circ }} \\
& \Rightarrow 1 \\
\end{align}\]
Hence, we get the same result, i.e. the value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is 1.
One more way to solve this expression is to convert sine into cosine and vice-versa, i.e.
For the given expression: $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
We can convert \[\cos {{30}^{\circ }}\Rightarrow \sin \left( {{90}^{\circ }}-{{30}^{\circ }} \right)\] and $\sin {{30}^{\circ }}\Rightarrow \cos \left( {{90}^{\circ }}-{{30}^{\circ }} \right)$
So, we get:
$\Rightarrow \text{sin}{{60}^{\circ }}\sin {{60}^{\circ }}+\text{ cos6}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
We can solve this expression putting the values for standard angles. So, we get:
$\begin{align}
& \Rightarrow \left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4} \\
& \Rightarrow 1 \\
\end{align}$
Hence, we can say that whichever method we try, we are getting the same value. Therefore, there are various methods to solve a trigonometric equation.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

What is the missing number in the sequence 259142027 class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

