
The value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is _______.
Answer
591.9k+ views
Hint: Since the trigonometric function consists of $\sin {\theta}$ and $\cos {\theta}$, use the sine-cosine trigonometric relations to simplify the given function.
i.e. $\text{sin}\left( \text{A+B} \right)\text{=sinA}\text{.cosB + cosA}\text{.sinB}$
Then substitute the standard values of given angles in the equation to get an answer.
Complete step-by-step solution:
In the given question, we have:
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
By using identity, $\text{sin}\left( \text{A+B} \right)\text{=sinA}\text{.cosB + cosA}\text{.sinB}$
We can write equation (1) as:
$\begin{align}
& \text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\text{ sin}\left( \text{3}{{0}^{\circ }}+{{60}^{\circ }} \right) \\
& =\text{ sin}{{90}^{\circ }}
\end{align}$
Since $\text{sin}{{90}^{\circ }}=1$;
Therefore,
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\text{ 1}$
Hence the value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is 1.
Note: This is another way to calculate the given trigonometric function. We know that the expression contains all standard angles, so we can directly put the values of standard angles in the equation and solve it to get the answer, i.e.
$\text{sin}{{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\text{sin3}{{0}^{\circ }}\text{= cos}{{60}^{\circ }}=\dfrac{1}{2}$
The table below shows the values of standard angles:
Therefore, using the above values and substituting in the given expression, we get:
$\begin{align}
& \text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& =\dfrac{3}{4}+\dfrac{1}{4} \\
& =\dfrac{4}{4} \\
& =1
\end{align}$
Yet, we can solve the given expression by using more complex identities:
$\left\{ \begin{align}
& 2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) \\
& 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) \\
\end{align} \right\}$
In the given question, we have:
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
By multiplying and dividing the whole equation by 2, we get:
\[\Rightarrow \dfrac{1}{2}\left( \text{2sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ 2sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }} \right)\]
Now, by applying the identities stated above, we can write the expression as:
\[\Rightarrow \dfrac{1}{2}\left( \begin{align}
& \left( \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right)+\text{sin}\left( {{60}^{\circ }}-{{30}^{\circ }} \right) \right) \\
& +\left( \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right)-\text{sin}\left( {{60}^{\circ }}-{{30}^{\circ }} \right) \right) \\
\end{align} \right)\]
Now, solving the equations, we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 2\text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right) \right) \\
& \Rightarrow \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right) \\
& \Rightarrow \sin {{90}^{\circ }} \\
& \Rightarrow 1 \\
\end{align}\]
Hence, we get the same result, i.e. the value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is 1.
One more way to solve this expression is to convert sine into cosine and vice-versa, i.e.
For the given expression: $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
We can convert \[\cos {{30}^{\circ }}\Rightarrow \sin \left( {{90}^{\circ }}-{{30}^{\circ }} \right)\] and $\sin {{30}^{\circ }}\Rightarrow \cos \left( {{90}^{\circ }}-{{30}^{\circ }} \right)$
So, we get:
$\Rightarrow \text{sin}{{60}^{\circ }}\sin {{60}^{\circ }}+\text{ cos6}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
We can solve this expression putting the values for standard angles. So, we get:
$\begin{align}
& \Rightarrow \left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4} \\
& \Rightarrow 1 \\
\end{align}$
Hence, we can say that whichever method we try, we are getting the same value. Therefore, there are various methods to solve a trigonometric equation.
i.e. $\text{sin}\left( \text{A+B} \right)\text{=sinA}\text{.cosB + cosA}\text{.sinB}$
Then substitute the standard values of given angles in the equation to get an answer.
Complete step-by-step solution:
In the given question, we have:
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
By using identity, $\text{sin}\left( \text{A+B} \right)\text{=sinA}\text{.cosB + cosA}\text{.sinB}$
We can write equation (1) as:
$\begin{align}
& \text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\text{ sin}\left( \text{3}{{0}^{\circ }}+{{60}^{\circ }} \right) \\
& =\text{ sin}{{90}^{\circ }}
\end{align}$
Since $\text{sin}{{90}^{\circ }}=1$;
Therefore,
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\text{ 1}$
Hence the value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is 1.
Note: This is another way to calculate the given trigonometric function. We know that the expression contains all standard angles, so we can directly put the values of standard angles in the equation and solve it to get the answer, i.e.
$\text{sin}{{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\text{sin3}{{0}^{\circ }}\text{= cos}{{60}^{\circ }}=\dfrac{1}{2}$
The table below shows the values of standard angles:
| \[\angle A\] | ${{0}^{\circ }}$ | ${{30}^{\circ }}$ | ${{45}^{\circ }}$ | ${{60}^{\circ }}$ | ${{90}^{\circ }}$ |
| $\sin A$ | 0 | $\dfrac{1}{2}$ | \[\dfrac{1}{\sqrt{2}}\] | $\dfrac{\sqrt{3}}{2}$ | 1 |
| $\cos A$ | 1 | $\dfrac{\sqrt{3}}{2}$ | \[\dfrac{1}{\sqrt{2}}\] | $\dfrac{1}{2}$ | 0 |
| $\tan A$ | 0 | \[\dfrac{1}{\sqrt{3}}\] | 1 | $\sqrt{3}$ | Not defined |
| $\text{cosec }A$ | Not defined | 2 | \[\sqrt{2}\] | \[\dfrac{2}{\sqrt{3}}\] | 1 |
| $\sec A$ | 1 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{2}\] | 2 | Not defined |
| $\cot A$ | Not defined | $\sqrt{3}$ | 1 | \[\dfrac{1}{\sqrt{3}}\] | 0 |
Therefore, using the above values and substituting in the given expression, we get:
$\begin{align}
& \text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}=\left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& =\dfrac{3}{4}+\dfrac{1}{4} \\
& =\dfrac{4}{4} \\
& =1
\end{align}$
Yet, we can solve the given expression by using more complex identities:
$\left\{ \begin{align}
& 2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) \\
& 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) \\
\end{align} \right\}$
In the given question, we have:
$\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
By multiplying and dividing the whole equation by 2, we get:
\[\Rightarrow \dfrac{1}{2}\left( \text{2sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ 2sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }} \right)\]
Now, by applying the identities stated above, we can write the expression as:
\[\Rightarrow \dfrac{1}{2}\left( \begin{align}
& \left( \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right)+\text{sin}\left( {{60}^{\circ }}-{{30}^{\circ }} \right) \right) \\
& +\left( \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right)-\text{sin}\left( {{60}^{\circ }}-{{30}^{\circ }} \right) \right) \\
\end{align} \right)\]
Now, solving the equations, we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 2\text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right) \right) \\
& \Rightarrow \text{sin}\left( {{60}^{\circ }}+{{30}^{\circ }} \right) \\
& \Rightarrow \sin {{90}^{\circ }} \\
& \Rightarrow 1 \\
\end{align}\]
Hence, we get the same result, i.e. the value of $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$ is 1.
One more way to solve this expression is to convert sine into cosine and vice-versa, i.e.
For the given expression: $\text{sin}{{60}^{\circ }}\cos {{30}^{\circ }}+\text{ sin3}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
We can convert \[\cos {{30}^{\circ }}\Rightarrow \sin \left( {{90}^{\circ }}-{{30}^{\circ }} \right)\] and $\sin {{30}^{\circ }}\Rightarrow \cos \left( {{90}^{\circ }}-{{30}^{\circ }} \right)$
So, we get:
$\Rightarrow \text{sin}{{60}^{\circ }}\sin {{60}^{\circ }}+\text{ cos6}{{0}^{\circ }}\text{ cos}{{60}^{\circ }}$
We can solve this expression putting the values for standard angles. So, we get:
$\begin{align}
& \Rightarrow \left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{3}{4}+\dfrac{1}{4} \\
& \Rightarrow 1 \\
\end{align}$
Hence, we can say that whichever method we try, we are getting the same value. Therefore, there are various methods to solve a trigonometric equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

