
The value of \[\int{\dfrac{dx}{1+e\cos x}}\] must be same as: -
(a) \[\dfrac{1}{\sqrt{1-{{e}^{2}}}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c\], (e lies between 0 and 1)
(b) \[\dfrac{2}{\sqrt{1-{{e}^{2}}}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c\], (e lies between 0 and 1)
(c) \[\dfrac{1}{\sqrt{{{e}^{2}}-1}}\log \dfrac{\sqrt{{{e}^{2}}-1}\sin x}{1+e\cos x}+c\], (e is greater than 1)
(d) \[\dfrac{2}{\sqrt{{{e}^{2}}-1}}\log \dfrac{e+\cos x+\sqrt{{{e}^{2}}-1}\sin x}{1+e\cos x}+c\], (e is greater than 1)
Answer
579.9k+ views
Hint: Use the conversion formula: - \[\cos x=\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)\] and send \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)\] to the numerator. In the numerator use the identity, \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\]. Now, assume \[\tan \dfrac{x}{2}=k\] in the denominator. Differentiate both the sides to find dx in terms of dk. Convert the integral in the form \[\int{\dfrac{dx}{{{a}^{2}}+{{x}^{2}}}}\], whose solution is \[\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)\]. Finally, substitute the value of k to get the correct option.
Complete step by step answer:
We have been given: -
\[\Rightarrow I=\int{\dfrac{dx}{1+e\cos x}}\]
Using the conversion: - \[\cos x=\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)\], we get,
\[\begin{align}
& \Rightarrow I=\int{\dfrac{dx}{1+e\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)}} \\
& \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)+e\left( 1-{{\tan }^{2}}\dfrac{x}{2} \right)}} \\
& \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}} \\
\end{align}\]
Using the identity: - \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\], we get,
\[\Rightarrow I=\int{\dfrac{{{\sec }^{2}}\dfrac{x}{2}dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}}\]
Substituting, \[\tan \dfrac{x}{2}=k\], we have,
\[\begin{align}
& \Rightarrow d\left( \tan \dfrac{x}{2} \right)=dk \\
& \Rightarrow \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx=dk \\
& \Rightarrow {{\sec }^{2}}\dfrac{x}{2}dx=2dk \\
\end{align}\]
Substituting these values in (i), we get,
\[\Rightarrow I=\int{\dfrac{2dk}{\left( 1+e \right)+\left( 1-e \right).{{k}^{2}}}}\]
\[\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{\left( \dfrac{1+e}{1-e} \right)+{{k}^{2}}}}\]
This can be written as: -
\[\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{{{\left( \sqrt{\dfrac{1+e}{1-e}} \right)}^{2}}+{{k}^{2}}}}\]
The above integral is of the form: - \[\int{\dfrac{dx}{{{a}^{2}}+{{x}^{2}}}}\] whose solution is \[\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)\].
\[\Rightarrow I=\dfrac{2}{1-e}\times \dfrac{1}{\sqrt{\dfrac{1+e}{1-e}}}{{\tan }^{-1}}\left( \dfrac{k}{\sqrt{\dfrac{1+e}{1-e}}} \right)+c\], c = constant of integration.
\[\Rightarrow I=\dfrac{2}{1-e}\times \sqrt{\dfrac{1-e}{1+e}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}k \right)+c\]
Substituting the value of k and simplifying, we get,
\[\begin{align}
& \Rightarrow I=\dfrac{2}{\sqrt{1-e}\times \sqrt{1+e}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c \\
& \Rightarrow I=\dfrac{2}{\sqrt{1-{{e}^{2}}}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2}=k \right)+c \\
\end{align}\]
Now, for \[\sqrt{\dfrac{1+e}{1-e}}\] to be defined, e must be less than 1 and greater than 0. This is because the term inside the square root must not be negative.
So, the correct answer is “Option B”.
Note: One may note that we do not have to convert \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\] in denominator because we have to assume \[\tan \dfrac{x}{2}=k\] in denominator. If we will use this conversion in the denominator then we will not be able to solve the question. Finally, remember that we have to define the range of ‘e’ so that the term \[\sqrt{\dfrac{1-e}{1+e}}\] can be defined.
Complete step by step answer:
We have been given: -
\[\Rightarrow I=\int{\dfrac{dx}{1+e\cos x}}\]
Using the conversion: - \[\cos x=\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)\], we get,
\[\begin{align}
& \Rightarrow I=\int{\dfrac{dx}{1+e\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)}} \\
& \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)+e\left( 1-{{\tan }^{2}}\dfrac{x}{2} \right)}} \\
& \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}} \\
\end{align}\]
Using the identity: - \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\], we get,
\[\Rightarrow I=\int{\dfrac{{{\sec }^{2}}\dfrac{x}{2}dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}}\]
Substituting, \[\tan \dfrac{x}{2}=k\], we have,
\[\begin{align}
& \Rightarrow d\left( \tan \dfrac{x}{2} \right)=dk \\
& \Rightarrow \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx=dk \\
& \Rightarrow {{\sec }^{2}}\dfrac{x}{2}dx=2dk \\
\end{align}\]
Substituting these values in (i), we get,
\[\Rightarrow I=\int{\dfrac{2dk}{\left( 1+e \right)+\left( 1-e \right).{{k}^{2}}}}\]
\[\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{\left( \dfrac{1+e}{1-e} \right)+{{k}^{2}}}}\]
This can be written as: -
\[\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{{{\left( \sqrt{\dfrac{1+e}{1-e}} \right)}^{2}}+{{k}^{2}}}}\]
The above integral is of the form: - \[\int{\dfrac{dx}{{{a}^{2}}+{{x}^{2}}}}\] whose solution is \[\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)\].
\[\Rightarrow I=\dfrac{2}{1-e}\times \dfrac{1}{\sqrt{\dfrac{1+e}{1-e}}}{{\tan }^{-1}}\left( \dfrac{k}{\sqrt{\dfrac{1+e}{1-e}}} \right)+c\], c = constant of integration.
\[\Rightarrow I=\dfrac{2}{1-e}\times \sqrt{\dfrac{1-e}{1+e}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}k \right)+c\]
Substituting the value of k and simplifying, we get,
\[\begin{align}
& \Rightarrow I=\dfrac{2}{\sqrt{1-e}\times \sqrt{1+e}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c \\
& \Rightarrow I=\dfrac{2}{\sqrt{1-{{e}^{2}}}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2}=k \right)+c \\
\end{align}\]
Now, for \[\sqrt{\dfrac{1+e}{1-e}}\] to be defined, e must be less than 1 and greater than 0. This is because the term inside the square root must not be negative.
So, the correct answer is “Option B”.
Note: One may note that we do not have to convert \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\] in denominator because we have to assume \[\tan \dfrac{x}{2}=k\] in denominator. If we will use this conversion in the denominator then we will not be able to solve the question. Finally, remember that we have to define the range of ‘e’ so that the term \[\sqrt{\dfrac{1-e}{1+e}}\] can be defined.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

