
The value of \[\int{\dfrac{dx}{1+e\cos x}}\] must be same as: -
(a) \[\dfrac{1}{\sqrt{1-{{e}^{2}}}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c\], (e lies between 0 and 1)
(b) \[\dfrac{2}{\sqrt{1-{{e}^{2}}}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c\], (e lies between 0 and 1)
(c) \[\dfrac{1}{\sqrt{{{e}^{2}}-1}}\log \dfrac{\sqrt{{{e}^{2}}-1}\sin x}{1+e\cos x}+c\], (e is greater than 1)
(d) \[\dfrac{2}{\sqrt{{{e}^{2}}-1}}\log \dfrac{e+\cos x+\sqrt{{{e}^{2}}-1}\sin x}{1+e\cos x}+c\], (e is greater than 1)
Answer
565.8k+ views
Hint: Use the conversion formula: - \[\cos x=\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)\] and send \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)\] to the numerator. In the numerator use the identity, \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\]. Now, assume \[\tan \dfrac{x}{2}=k\] in the denominator. Differentiate both the sides to find dx in terms of dk. Convert the integral in the form \[\int{\dfrac{dx}{{{a}^{2}}+{{x}^{2}}}}\], whose solution is \[\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)\]. Finally, substitute the value of k to get the correct option.
Complete step by step answer:
We have been given: -
\[\Rightarrow I=\int{\dfrac{dx}{1+e\cos x}}\]
Using the conversion: - \[\cos x=\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)\], we get,
\[\begin{align}
& \Rightarrow I=\int{\dfrac{dx}{1+e\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)}} \\
& \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)+e\left( 1-{{\tan }^{2}}\dfrac{x}{2} \right)}} \\
& \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}} \\
\end{align}\]
Using the identity: - \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\], we get,
\[\Rightarrow I=\int{\dfrac{{{\sec }^{2}}\dfrac{x}{2}dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}}\]
Substituting, \[\tan \dfrac{x}{2}=k\], we have,
\[\begin{align}
& \Rightarrow d\left( \tan \dfrac{x}{2} \right)=dk \\
& \Rightarrow \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx=dk \\
& \Rightarrow {{\sec }^{2}}\dfrac{x}{2}dx=2dk \\
\end{align}\]
Substituting these values in (i), we get,
\[\Rightarrow I=\int{\dfrac{2dk}{\left( 1+e \right)+\left( 1-e \right).{{k}^{2}}}}\]
\[\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{\left( \dfrac{1+e}{1-e} \right)+{{k}^{2}}}}\]
This can be written as: -
\[\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{{{\left( \sqrt{\dfrac{1+e}{1-e}} \right)}^{2}}+{{k}^{2}}}}\]
The above integral is of the form: - \[\int{\dfrac{dx}{{{a}^{2}}+{{x}^{2}}}}\] whose solution is \[\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)\].
\[\Rightarrow I=\dfrac{2}{1-e}\times \dfrac{1}{\sqrt{\dfrac{1+e}{1-e}}}{{\tan }^{-1}}\left( \dfrac{k}{\sqrt{\dfrac{1+e}{1-e}}} \right)+c\], c = constant of integration.
\[\Rightarrow I=\dfrac{2}{1-e}\times \sqrt{\dfrac{1-e}{1+e}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}k \right)+c\]
Substituting the value of k and simplifying, we get,
\[\begin{align}
& \Rightarrow I=\dfrac{2}{\sqrt{1-e}\times \sqrt{1+e}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c \\
& \Rightarrow I=\dfrac{2}{\sqrt{1-{{e}^{2}}}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2}=k \right)+c \\
\end{align}\]
Now, for \[\sqrt{\dfrac{1+e}{1-e}}\] to be defined, e must be less than 1 and greater than 0. This is because the term inside the square root must not be negative.
So, the correct answer is “Option B”.
Note: One may note that we do not have to convert \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\] in denominator because we have to assume \[\tan \dfrac{x}{2}=k\] in denominator. If we will use this conversion in the denominator then we will not be able to solve the question. Finally, remember that we have to define the range of ‘e’ so that the term \[\sqrt{\dfrac{1-e}{1+e}}\] can be defined.
Complete step by step answer:
We have been given: -
\[\Rightarrow I=\int{\dfrac{dx}{1+e\cos x}}\]
Using the conversion: - \[\cos x=\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)\], we get,
\[\begin{align}
& \Rightarrow I=\int{\dfrac{dx}{1+e\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)}} \\
& \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)+e\left( 1-{{\tan }^{2}}\dfrac{x}{2} \right)}} \\
& \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}} \\
\end{align}\]
Using the identity: - \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\], we get,
\[\Rightarrow I=\int{\dfrac{{{\sec }^{2}}\dfrac{x}{2}dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}}\]
Substituting, \[\tan \dfrac{x}{2}=k\], we have,
\[\begin{align}
& \Rightarrow d\left( \tan \dfrac{x}{2} \right)=dk \\
& \Rightarrow \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx=dk \\
& \Rightarrow {{\sec }^{2}}\dfrac{x}{2}dx=2dk \\
\end{align}\]
Substituting these values in (i), we get,
\[\Rightarrow I=\int{\dfrac{2dk}{\left( 1+e \right)+\left( 1-e \right).{{k}^{2}}}}\]
\[\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{\left( \dfrac{1+e}{1-e} \right)+{{k}^{2}}}}\]
This can be written as: -
\[\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{{{\left( \sqrt{\dfrac{1+e}{1-e}} \right)}^{2}}+{{k}^{2}}}}\]
The above integral is of the form: - \[\int{\dfrac{dx}{{{a}^{2}}+{{x}^{2}}}}\] whose solution is \[\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)\].
\[\Rightarrow I=\dfrac{2}{1-e}\times \dfrac{1}{\sqrt{\dfrac{1+e}{1-e}}}{{\tan }^{-1}}\left( \dfrac{k}{\sqrt{\dfrac{1+e}{1-e}}} \right)+c\], c = constant of integration.
\[\Rightarrow I=\dfrac{2}{1-e}\times \sqrt{\dfrac{1-e}{1+e}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}k \right)+c\]
Substituting the value of k and simplifying, we get,
\[\begin{align}
& \Rightarrow I=\dfrac{2}{\sqrt{1-e}\times \sqrt{1+e}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c \\
& \Rightarrow I=\dfrac{2}{\sqrt{1-{{e}^{2}}}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2}=k \right)+c \\
\end{align}\]
Now, for \[\sqrt{\dfrac{1+e}{1-e}}\] to be defined, e must be less than 1 and greater than 0. This is because the term inside the square root must not be negative.
So, the correct answer is “Option B”.
Note: One may note that we do not have to convert \[\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}\] in denominator because we have to assume \[\tan \dfrac{x}{2}=k\] in denominator. If we will use this conversion in the denominator then we will not be able to solve the question. Finally, remember that we have to define the range of ‘e’ so that the term \[\sqrt{\dfrac{1-e}{1+e}}\] can be defined.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

