
The value of expression \[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]is
\[1)\]\[\dfrac{{\sqrt 3 }}{4}\]
\[2)\]$\dfrac{4}{{\sqrt 3 }}$
\[3)\]$\dfrac{2}{{\sqrt 3 }}$
\[4)\]\[\dfrac{{\sqrt 3 }}{2}\]
Answer
486.9k+ views
Hint: We have to find the value of the given trigonometric expression \[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\] . We solve this using the formula of the double angle of sine function . We should also have the knowledge of values for various angles of trigonometric functions . Firstly we find the value of expression using the formula of sum of two angles of a sine function . Also , the conversion of an angle in terms of another trigonometric function.
Complete step-by-step solution:
Given :
We have to find the value of the expression \[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]
We know , that
\[\cos290^\circ = \cos\left( {360 - 70} \right)^\circ \] The angle lies in the fourth quadrant and the value of cos function in the fourth is positive .
So ,
\[\cos290^\circ = \cos70^\circ \]
Similarly ,
\[\sin250^\circ = \sin\left( {180 + 70} \right)^\circ \]
The angle lies in the third quadrant and the value of sine function in the third quadrant is negative .
So ,\[\;\sin250^\circ = - \sin70^\circ \]
Now , the expression becomes
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \left( {\dfrac{1}{{\cos70^\circ }}} \right) - \left( {\dfrac{1}{{\sqrt 3 \times \sin70^\circ }}} \right)\]
Taking L.C.M. we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{\left[ {\sqrt 3 \times \sin70^\circ - \cos70^\circ } \right]}}{{\left[ {{\text{ }}\sqrt 3 \times \sin70^\circ \times \cos70^\circ } \right]}}\]
Multiplying numerator and denominator by $4$ , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{4 \times \left[ {\sqrt 3 \times \sin70^\circ - \cos70^\circ } \right]}}{{4 \times \left[ {{\text{ }}\sqrt 3 \times \sin70^\circ \times \cos70^\circ } \right]}}\]
Simplifying , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{\left[ {\left( {\dfrac{{\sqrt 3 }}{2}} \right) \times \sin70^\circ - \left( {\dfrac{1}{2}} \right) \times \cos70^\circ } \right]}}{{\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \left[ {2 \times \sin70^\circ \times \cos70^\circ } \right]}}\]
We know that \[\sin2x = 2\sin x \times \cos x\]
We also know that
\[\cos30^\circ = \dfrac{{\sqrt 3 }}{2}\]
\[\sin30^\circ = \dfrac{1}{2}\]
Using these values , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{\left[ {\cos30^\circ \times \sin70^\circ - \sin30^\circ \times \cos70^\circ } \right]}}{{\left[ {\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \sin140^\circ } \right]}}\]
Also , the formula of difference of sine function is given as :
\[\sin\left( {A - B} \right) = \sin A \times \cos B - \sin B \times \cos A\]
Also , we can write
\[\sin140^\circ = \sin\left( {180 - 40} \right)^\circ \]
The angle lies in the second quadrant and the value of sine function in the second quadrant is positive .
So , \[\sin140^\circ = \sin40^\circ \]
U\sing these trigonometric formulas , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{\sin40^\circ }}{{\left[ {\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \sin40^\circ } \right]}}\]
Cancelling the terms , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\] $ = \dfrac{4}{{\sqrt 3 }}$
Thus the value of the expression is $\dfrac{4}{{\sqrt 3 }}$
Hence , the correct option is\[\left( 2 \right)\].
Note: The various trigonometric formulas are given as :
\[\sin2x = 2 \times \sin x \times \cos x\]
$\cos 2x = 2 \times {\cos^{2}}x - 1 = 1 - 2 \times {\sin^{2}}x$
$\tan 2x = \dfrac{{tan2x}}{{(1 - {\tan^{2}}x)}}$
$\sin 3x = 3\\sin x - 4{\sin^{3}}x$
$\cos 3x = 4{\cos^{3}}x - 3\cos x$
Complete step-by-step solution:
Given :
We have to find the value of the expression \[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]
We know , that
\[\cos290^\circ = \cos\left( {360 - 70} \right)^\circ \] The angle lies in the fourth quadrant and the value of cos function in the fourth is positive .
So ,
\[\cos290^\circ = \cos70^\circ \]
Similarly ,
\[\sin250^\circ = \sin\left( {180 + 70} \right)^\circ \]
The angle lies in the third quadrant and the value of sine function in the third quadrant is negative .
So ,\[\;\sin250^\circ = - \sin70^\circ \]
Now , the expression becomes
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \left( {\dfrac{1}{{\cos70^\circ }}} \right) - \left( {\dfrac{1}{{\sqrt 3 \times \sin70^\circ }}} \right)\]
Taking L.C.M. we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{\left[ {\sqrt 3 \times \sin70^\circ - \cos70^\circ } \right]}}{{\left[ {{\text{ }}\sqrt 3 \times \sin70^\circ \times \cos70^\circ } \right]}}\]
Multiplying numerator and denominator by $4$ , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{4 \times \left[ {\sqrt 3 \times \sin70^\circ - \cos70^\circ } \right]}}{{4 \times \left[ {{\text{ }}\sqrt 3 \times \sin70^\circ \times \cos70^\circ } \right]}}\]
Simplifying , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{\left[ {\left( {\dfrac{{\sqrt 3 }}{2}} \right) \times \sin70^\circ - \left( {\dfrac{1}{2}} \right) \times \cos70^\circ } \right]}}{{\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \left[ {2 \times \sin70^\circ \times \cos70^\circ } \right]}}\]
We know that \[\sin2x = 2\sin x \times \cos x\]
We also know that
\[\cos30^\circ = \dfrac{{\sqrt 3 }}{2}\]
\[\sin30^\circ = \dfrac{1}{2}\]
Using these values , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{\left[ {\cos30^\circ \times \sin70^\circ - \sin30^\circ \times \cos70^\circ } \right]}}{{\left[ {\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \sin140^\circ } \right]}}\]
Also , the formula of difference of sine function is given as :
\[\sin\left( {A - B} \right) = \sin A \times \cos B - \sin B \times \cos A\]
Also , we can write
\[\sin140^\circ = \sin\left( {180 - 40} \right)^\circ \]
The angle lies in the second quadrant and the value of sine function in the second quadrant is positive .
So , \[\sin140^\circ = \sin40^\circ \]
U\sing these trigonometric formulas , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\]\[ = \dfrac{{\sin40^\circ }}{{\left[ {\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \sin40^\circ } \right]}}\]
Cancelling the terms , we get
\[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)\] $ = \dfrac{4}{{\sqrt 3 }}$
Thus the value of the expression is $\dfrac{4}{{\sqrt 3 }}$
Hence , the correct option is\[\left( 2 \right)\].
Note: The various trigonometric formulas are given as :
\[\sin2x = 2 \times \sin x \times \cos x\]
$\cos 2x = 2 \times {\cos^{2}}x - 1 = 1 - 2 \times {\sin^{2}}x$
$\tan 2x = \dfrac{{tan2x}}{{(1 - {\tan^{2}}x)}}$
$\sin 3x = 3\\sin x - 4{\sin^{3}}x$
$\cos 3x = 4{\cos^{3}}x - 3\cos x$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

