
The value of \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)=\dfrac{\sin \left( \dfrac{nB}{2} \right)\cos \left( A+\left( n-1 \right)\dfrac{B}{2} \right)}{\sin \left( \dfrac{B}{2} \right)}\] is
a) True
b) False
Answer
603.3k+ views
Hint: We know that any complex term of the form \[{{e}^{i\theta }}\] can be expressed as the \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], so, we can write \[\cos \theta =\operatorname{Re}\left( {{e}^{i\theta }} \right)\]. After applying this formula, we can apply the formula which is used to find the sum of the geometric series, that is, \[S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}\], where a is the first term of geometric progression, r is the common ratio of the geometric progression.
Complete step-by-step answer:
In this question, we have to find whether \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)=\dfrac{\sin \left( \dfrac{nB}{2} \right)\cos \left( A+\left( n-1 \right)\dfrac{B}{2} \right)}{\sin \left( \dfrac{B}{2} \right)}\] is true or not.
Now, let us consider L.H.S. first, that is, \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)\]
We know that this can be further written as \[\sum\limits_{k=0}^{n-1}{\cos \left( A+kB \right)}\]
We know that any exponential complex number, like \[{{e}^{i\theta }}\] can be written as \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], where \[\cos \theta \] is the real part of the complex number and \[\sin \theta \] is the imaginary part. So, \[\cos \theta \] can be written as \[\cos \theta =\operatorname{Re}\left( {{e}^{i\theta }} \right)\].
Therefore, we can write, \[\sum\limits_{k=0}^{n-1}{\cos \left( A+kB \right)}=\sum\limits_{k=0}^{n-1}{\operatorname{Re}\left( {{e}^{i\left( A+kB \right)}} \right)}\]
Now, if we will put the value of k in \[\sum\limits_{k=0}^{n-1}{\operatorname{Re}\left( {{e}^{i\left( A+kB \right)}} \right)}\], we will see that a geometric progression has formed, which is as same as \[\operatorname{Re}\left( {{e}^{i\left( A \right)}} \right)+\operatorname{Re}\left( {{e}^{i\left( A+B \right)}} \right)+\operatorname{Re}\left( {{e}^{i\left( A+2B \right)}} \right)+.....+\operatorname{Re}\left( {{e}^{i\left( A+\left( n-1 \right)B \right)}} \right)\], which on further simplification gives,
\[\operatorname{Re}\left( \left( {{e}^{i\left( A \right)}} \right)+\left( {{e}^{i\left( A+B \right)}} \right)+\left( {{e}^{i\left( A+2B \right)}} \right)+.....+\left( {{e}^{i\left( A+\left( n-1 \right)B \right)}} \right) \right)\]
\[\Rightarrow \operatorname{Re}\left( {{e}^{iA}} \right)\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)\]
Now, we can see that a pattern is followed, which is as same as the pattern of geometric progression, so we can apply the formula of sum of geometric series, that is, \[S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}\], where a represents the first term of geometric progression, r represents the common ratio of the geometric progression.
In our series, 1 is the first term of geometric progression, \[{{e}^{i\left( B \right)}}\] is the common ratio of the progression, that is, \[a=1\] and \[r={{e}^{i\left( B \right)}}\].
Therefore, the sum of the series \[\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)\] is \[S=\dfrac{1\left( {{\left( {{e}^{i\left( B \right)}} \right)}^{n}}-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)}\]
\[\Rightarrow S=\dfrac{\left( \left( {{e}^{inB}} \right)-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)}\]
Therefore, \[\operatorname{Re}\left( {{e}^{iA}} \right)\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)=\operatorname{Re}\left( {{e}^{iA}} \right)\left( \dfrac{1\left( \left( {{e}^{inB}} \right)-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)} \right)\]
Now, we will take, \[{{e}^{in\dfrac{B}{2}}}\] common from numerator and \[{{e}^{i\dfrac{B}{2}}}\] common from denominator, we will get,
\[\operatorname{Re}\left( {{e}^{iA}} \right)\left( {{e}^{i(n-1)\dfrac{B}{2}}} \right)\left( \dfrac{\left( {{e}^{in\dfrac{B}{2}}} \right)-\left( {{e}^{-in\dfrac{B}{2}}} \right)}{\left( {{e}^{i\dfrac{B}{2}}} \right)-\left( {{e}^{-i\dfrac{B}{2}}} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( {{e}^{i\left( A+(n-1)\dfrac{B}{2} \right)}} \right)\left( \dfrac{\left( {{e}^{in\dfrac{B}{2}}} \right)-\left( {{e}^{-in\dfrac{B}{2}}} \right)}{\left( {{e}^{i\dfrac{B}{2}}} \right)-\left( {{e}^{-i\dfrac{B}{2}}} \right)} \right)\]
Now, we will put \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], so, we will get,
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\left( \cos \left( n\dfrac{B}{2} \right)+i\sin \left( n\dfrac{B}{2} \right) \right)-\left( \cos \left( n\dfrac{B}{2} \right)-i\sin \left( n\dfrac{B}{2} \right) \right)}{\left( \cos \dfrac{B}{2}+i\sin \dfrac{B}{2} \right)-\left( \cos \dfrac{B}{2}-i\sin \dfrac{B}{2} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{2\left( i\sin \left( n\dfrac{B}{2} \right) \right)}{2\left( i\sin \dfrac{B}{2} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
Now, we will remove the terms containing \[i\], to get the real part as L.H.S.
\[\Rightarrow \left( \cos \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
\[\Rightarrow \left( \dfrac{\cos \left( A+(n-1)\dfrac{B}{2} \right)\times \sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
= R.H.S.
Hence, proved.
Note: There are possibilities that we will do rationalisation at the place of taking out common from numerator and denominator, which is obviously not wrong but will make questions more complicated and lengthier.
Complete step-by-step answer:
In this question, we have to find whether \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)=\dfrac{\sin \left( \dfrac{nB}{2} \right)\cos \left( A+\left( n-1 \right)\dfrac{B}{2} \right)}{\sin \left( \dfrac{B}{2} \right)}\] is true or not.
Now, let us consider L.H.S. first, that is, \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)\]
We know that this can be further written as \[\sum\limits_{k=0}^{n-1}{\cos \left( A+kB \right)}\]
We know that any exponential complex number, like \[{{e}^{i\theta }}\] can be written as \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], where \[\cos \theta \] is the real part of the complex number and \[\sin \theta \] is the imaginary part. So, \[\cos \theta \] can be written as \[\cos \theta =\operatorname{Re}\left( {{e}^{i\theta }} \right)\].
Therefore, we can write, \[\sum\limits_{k=0}^{n-1}{\cos \left( A+kB \right)}=\sum\limits_{k=0}^{n-1}{\operatorname{Re}\left( {{e}^{i\left( A+kB \right)}} \right)}\]
Now, if we will put the value of k in \[\sum\limits_{k=0}^{n-1}{\operatorname{Re}\left( {{e}^{i\left( A+kB \right)}} \right)}\], we will see that a geometric progression has formed, which is as same as \[\operatorname{Re}\left( {{e}^{i\left( A \right)}} \right)+\operatorname{Re}\left( {{e}^{i\left( A+B \right)}} \right)+\operatorname{Re}\left( {{e}^{i\left( A+2B \right)}} \right)+.....+\operatorname{Re}\left( {{e}^{i\left( A+\left( n-1 \right)B \right)}} \right)\], which on further simplification gives,
\[\operatorname{Re}\left( \left( {{e}^{i\left( A \right)}} \right)+\left( {{e}^{i\left( A+B \right)}} \right)+\left( {{e}^{i\left( A+2B \right)}} \right)+.....+\left( {{e}^{i\left( A+\left( n-1 \right)B \right)}} \right) \right)\]
\[\Rightarrow \operatorname{Re}\left( {{e}^{iA}} \right)\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)\]
Now, we can see that a pattern is followed, which is as same as the pattern of geometric progression, so we can apply the formula of sum of geometric series, that is, \[S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}\], where a represents the first term of geometric progression, r represents the common ratio of the geometric progression.
In our series, 1 is the first term of geometric progression, \[{{e}^{i\left( B \right)}}\] is the common ratio of the progression, that is, \[a=1\] and \[r={{e}^{i\left( B \right)}}\].
Therefore, the sum of the series \[\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)\] is \[S=\dfrac{1\left( {{\left( {{e}^{i\left( B \right)}} \right)}^{n}}-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)}\]
\[\Rightarrow S=\dfrac{\left( \left( {{e}^{inB}} \right)-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)}\]
Therefore, \[\operatorname{Re}\left( {{e}^{iA}} \right)\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)=\operatorname{Re}\left( {{e}^{iA}} \right)\left( \dfrac{1\left( \left( {{e}^{inB}} \right)-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)} \right)\]
Now, we will take, \[{{e}^{in\dfrac{B}{2}}}\] common from numerator and \[{{e}^{i\dfrac{B}{2}}}\] common from denominator, we will get,
\[\operatorname{Re}\left( {{e}^{iA}} \right)\left( {{e}^{i(n-1)\dfrac{B}{2}}} \right)\left( \dfrac{\left( {{e}^{in\dfrac{B}{2}}} \right)-\left( {{e}^{-in\dfrac{B}{2}}} \right)}{\left( {{e}^{i\dfrac{B}{2}}} \right)-\left( {{e}^{-i\dfrac{B}{2}}} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( {{e}^{i\left( A+(n-1)\dfrac{B}{2} \right)}} \right)\left( \dfrac{\left( {{e}^{in\dfrac{B}{2}}} \right)-\left( {{e}^{-in\dfrac{B}{2}}} \right)}{\left( {{e}^{i\dfrac{B}{2}}} \right)-\left( {{e}^{-i\dfrac{B}{2}}} \right)} \right)\]
Now, we will put \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], so, we will get,
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\left( \cos \left( n\dfrac{B}{2} \right)+i\sin \left( n\dfrac{B}{2} \right) \right)-\left( \cos \left( n\dfrac{B}{2} \right)-i\sin \left( n\dfrac{B}{2} \right) \right)}{\left( \cos \dfrac{B}{2}+i\sin \dfrac{B}{2} \right)-\left( \cos \dfrac{B}{2}-i\sin \dfrac{B}{2} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{2\left( i\sin \left( n\dfrac{B}{2} \right) \right)}{2\left( i\sin \dfrac{B}{2} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
Now, we will remove the terms containing \[i\], to get the real part as L.H.S.
\[\Rightarrow \left( \cos \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
\[\Rightarrow \left( \dfrac{\cos \left( A+(n-1)\dfrac{B}{2} \right)\times \sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
= R.H.S.
Hence, proved.
Note: There are possibilities that we will do rationalisation at the place of taking out common from numerator and denominator, which is obviously not wrong but will make questions more complicated and lengthier.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

