
The value of \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)=\dfrac{\sin \left( \dfrac{nB}{2} \right)\cos \left( A+\left( n-1 \right)\dfrac{B}{2} \right)}{\sin \left( \dfrac{B}{2} \right)}\] is
a) True
b) False
Answer
615.6k+ views
Hint: We know that any complex term of the form \[{{e}^{i\theta }}\] can be expressed as the \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], so, we can write \[\cos \theta =\operatorname{Re}\left( {{e}^{i\theta }} \right)\]. After applying this formula, we can apply the formula which is used to find the sum of the geometric series, that is, \[S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}\], where a is the first term of geometric progression, r is the common ratio of the geometric progression.
Complete step-by-step answer:
In this question, we have to find whether \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)=\dfrac{\sin \left( \dfrac{nB}{2} \right)\cos \left( A+\left( n-1 \right)\dfrac{B}{2} \right)}{\sin \left( \dfrac{B}{2} \right)}\] is true or not.
Now, let us consider L.H.S. first, that is, \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)\]
We know that this can be further written as \[\sum\limits_{k=0}^{n-1}{\cos \left( A+kB \right)}\]
We know that any exponential complex number, like \[{{e}^{i\theta }}\] can be written as \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], where \[\cos \theta \] is the real part of the complex number and \[\sin \theta \] is the imaginary part. So, \[\cos \theta \] can be written as \[\cos \theta =\operatorname{Re}\left( {{e}^{i\theta }} \right)\].
Therefore, we can write, \[\sum\limits_{k=0}^{n-1}{\cos \left( A+kB \right)}=\sum\limits_{k=0}^{n-1}{\operatorname{Re}\left( {{e}^{i\left( A+kB \right)}} \right)}\]
Now, if we will put the value of k in \[\sum\limits_{k=0}^{n-1}{\operatorname{Re}\left( {{e}^{i\left( A+kB \right)}} \right)}\], we will see that a geometric progression has formed, which is as same as \[\operatorname{Re}\left( {{e}^{i\left( A \right)}} \right)+\operatorname{Re}\left( {{e}^{i\left( A+B \right)}} \right)+\operatorname{Re}\left( {{e}^{i\left( A+2B \right)}} \right)+.....+\operatorname{Re}\left( {{e}^{i\left( A+\left( n-1 \right)B \right)}} \right)\], which on further simplification gives,
\[\operatorname{Re}\left( \left( {{e}^{i\left( A \right)}} \right)+\left( {{e}^{i\left( A+B \right)}} \right)+\left( {{e}^{i\left( A+2B \right)}} \right)+.....+\left( {{e}^{i\left( A+\left( n-1 \right)B \right)}} \right) \right)\]
\[\Rightarrow \operatorname{Re}\left( {{e}^{iA}} \right)\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)\]
Now, we can see that a pattern is followed, which is as same as the pattern of geometric progression, so we can apply the formula of sum of geometric series, that is, \[S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}\], where a represents the first term of geometric progression, r represents the common ratio of the geometric progression.
In our series, 1 is the first term of geometric progression, \[{{e}^{i\left( B \right)}}\] is the common ratio of the progression, that is, \[a=1\] and \[r={{e}^{i\left( B \right)}}\].
Therefore, the sum of the series \[\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)\] is \[S=\dfrac{1\left( {{\left( {{e}^{i\left( B \right)}} \right)}^{n}}-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)}\]
\[\Rightarrow S=\dfrac{\left( \left( {{e}^{inB}} \right)-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)}\]
Therefore, \[\operatorname{Re}\left( {{e}^{iA}} \right)\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)=\operatorname{Re}\left( {{e}^{iA}} \right)\left( \dfrac{1\left( \left( {{e}^{inB}} \right)-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)} \right)\]
Now, we will take, \[{{e}^{in\dfrac{B}{2}}}\] common from numerator and \[{{e}^{i\dfrac{B}{2}}}\] common from denominator, we will get,
\[\operatorname{Re}\left( {{e}^{iA}} \right)\left( {{e}^{i(n-1)\dfrac{B}{2}}} \right)\left( \dfrac{\left( {{e}^{in\dfrac{B}{2}}} \right)-\left( {{e}^{-in\dfrac{B}{2}}} \right)}{\left( {{e}^{i\dfrac{B}{2}}} \right)-\left( {{e}^{-i\dfrac{B}{2}}} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( {{e}^{i\left( A+(n-1)\dfrac{B}{2} \right)}} \right)\left( \dfrac{\left( {{e}^{in\dfrac{B}{2}}} \right)-\left( {{e}^{-in\dfrac{B}{2}}} \right)}{\left( {{e}^{i\dfrac{B}{2}}} \right)-\left( {{e}^{-i\dfrac{B}{2}}} \right)} \right)\]
Now, we will put \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], so, we will get,
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\left( \cos \left( n\dfrac{B}{2} \right)+i\sin \left( n\dfrac{B}{2} \right) \right)-\left( \cos \left( n\dfrac{B}{2} \right)-i\sin \left( n\dfrac{B}{2} \right) \right)}{\left( \cos \dfrac{B}{2}+i\sin \dfrac{B}{2} \right)-\left( \cos \dfrac{B}{2}-i\sin \dfrac{B}{2} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{2\left( i\sin \left( n\dfrac{B}{2} \right) \right)}{2\left( i\sin \dfrac{B}{2} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
Now, we will remove the terms containing \[i\], to get the real part as L.H.S.
\[\Rightarrow \left( \cos \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
\[\Rightarrow \left( \dfrac{\cos \left( A+(n-1)\dfrac{B}{2} \right)\times \sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
= R.H.S.
Hence, proved.
Note: There are possibilities that we will do rationalisation at the place of taking out common from numerator and denominator, which is obviously not wrong but will make questions more complicated and lengthier.
Complete step-by-step answer:
In this question, we have to find whether \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)=\dfrac{\sin \left( \dfrac{nB}{2} \right)\cos \left( A+\left( n-1 \right)\dfrac{B}{2} \right)}{\sin \left( \dfrac{B}{2} \right)}\] is true or not.
Now, let us consider L.H.S. first, that is, \[\cos \left( A \right)+\cos \left( A+B \right)+\cos \left( A+2B \right)+.....+\cos \left( A+\left( n-1 \right)B \right)\]
We know that this can be further written as \[\sum\limits_{k=0}^{n-1}{\cos \left( A+kB \right)}\]
We know that any exponential complex number, like \[{{e}^{i\theta }}\] can be written as \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], where \[\cos \theta \] is the real part of the complex number and \[\sin \theta \] is the imaginary part. So, \[\cos \theta \] can be written as \[\cos \theta =\operatorname{Re}\left( {{e}^{i\theta }} \right)\].
Therefore, we can write, \[\sum\limits_{k=0}^{n-1}{\cos \left( A+kB \right)}=\sum\limits_{k=0}^{n-1}{\operatorname{Re}\left( {{e}^{i\left( A+kB \right)}} \right)}\]
Now, if we will put the value of k in \[\sum\limits_{k=0}^{n-1}{\operatorname{Re}\left( {{e}^{i\left( A+kB \right)}} \right)}\], we will see that a geometric progression has formed, which is as same as \[\operatorname{Re}\left( {{e}^{i\left( A \right)}} \right)+\operatorname{Re}\left( {{e}^{i\left( A+B \right)}} \right)+\operatorname{Re}\left( {{e}^{i\left( A+2B \right)}} \right)+.....+\operatorname{Re}\left( {{e}^{i\left( A+\left( n-1 \right)B \right)}} \right)\], which on further simplification gives,
\[\operatorname{Re}\left( \left( {{e}^{i\left( A \right)}} \right)+\left( {{e}^{i\left( A+B \right)}} \right)+\left( {{e}^{i\left( A+2B \right)}} \right)+.....+\left( {{e}^{i\left( A+\left( n-1 \right)B \right)}} \right) \right)\]
\[\Rightarrow \operatorname{Re}\left( {{e}^{iA}} \right)\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)\]
Now, we can see that a pattern is followed, which is as same as the pattern of geometric progression, so we can apply the formula of sum of geometric series, that is, \[S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}\], where a represents the first term of geometric progression, r represents the common ratio of the geometric progression.
In our series, 1 is the first term of geometric progression, \[{{e}^{i\left( B \right)}}\] is the common ratio of the progression, that is, \[a=1\] and \[r={{e}^{i\left( B \right)}}\].
Therefore, the sum of the series \[\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)\] is \[S=\dfrac{1\left( {{\left( {{e}^{i\left( B \right)}} \right)}^{n}}-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)}\]
\[\Rightarrow S=\dfrac{\left( \left( {{e}^{inB}} \right)-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)}\]
Therefore, \[\operatorname{Re}\left( {{e}^{iA}} \right)\left( 1+\left( {{e}^{i\left( B \right)}} \right)+\left( {{e}^{i\left( 2B \right)}} \right)+.....+\left( {{e}^{i\left( \left( n-1 \right)B \right)}} \right) \right)=\operatorname{Re}\left( {{e}^{iA}} \right)\left( \dfrac{1\left( \left( {{e}^{inB}} \right)-1 \right)}{\left( \left( {{e}^{i\left( B \right)}} \right)-1 \right)} \right)\]
Now, we will take, \[{{e}^{in\dfrac{B}{2}}}\] common from numerator and \[{{e}^{i\dfrac{B}{2}}}\] common from denominator, we will get,
\[\operatorname{Re}\left( {{e}^{iA}} \right)\left( {{e}^{i(n-1)\dfrac{B}{2}}} \right)\left( \dfrac{\left( {{e}^{in\dfrac{B}{2}}} \right)-\left( {{e}^{-in\dfrac{B}{2}}} \right)}{\left( {{e}^{i\dfrac{B}{2}}} \right)-\left( {{e}^{-i\dfrac{B}{2}}} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( {{e}^{i\left( A+(n-1)\dfrac{B}{2} \right)}} \right)\left( \dfrac{\left( {{e}^{in\dfrac{B}{2}}} \right)-\left( {{e}^{-in\dfrac{B}{2}}} \right)}{\left( {{e}^{i\dfrac{B}{2}}} \right)-\left( {{e}^{-i\dfrac{B}{2}}} \right)} \right)\]
Now, we will put \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \], so, we will get,
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\left( \cos \left( n\dfrac{B}{2} \right)+i\sin \left( n\dfrac{B}{2} \right) \right)-\left( \cos \left( n\dfrac{B}{2} \right)-i\sin \left( n\dfrac{B}{2} \right) \right)}{\left( \cos \dfrac{B}{2}+i\sin \dfrac{B}{2} \right)-\left( \cos \dfrac{B}{2}-i\sin \dfrac{B}{2} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{2\left( i\sin \left( n\dfrac{B}{2} \right) \right)}{2\left( i\sin \dfrac{B}{2} \right)} \right)\]
\[\Rightarrow \operatorname{Re}\left( \cos \left( A+(n-1)\dfrac{B}{2} \right)+i\sin \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
Now, we will remove the terms containing \[i\], to get the real part as L.H.S.
\[\Rightarrow \left( \cos \left( A+(n-1)\dfrac{B}{2} \right) \right)\left( \dfrac{\sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
\[\Rightarrow \left( \dfrac{\cos \left( A+(n-1)\dfrac{B}{2} \right)\times \sin \left( n\dfrac{B}{2} \right)}{\sin \dfrac{B}{2}} \right)\]
= R.H.S.
Hence, proved.
Note: There are possibilities that we will do rationalisation at the place of taking out common from numerator and denominator, which is obviously not wrong but will make questions more complicated and lengthier.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

