
The value of $\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7}$ is.
(a) 1
(b) -1
(c) 0
(d) none of these
Answer
610.5k+ views
Hint:For solving this question first we will use trigonometric formula $\cos \left( \theta \right)+\cos \left( \pi -\theta \right)=0$ and trigonometric ratio $\cos \pi =-1$ for simplifying the given term. After that, we will easily solve it without making any mistakes and find the correct value of the given term and select the correct answer.
Complete step-by-step answer:
Given:
We have to find the value of $\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7}$ .
Now, before we proceed we should know the following formulas:
$\begin{align}
& \cos \left( \theta \right)+\cos \left( \pi -\theta \right)=0..........\left( 1 \right) \\
& \cos \pi =-1..............................\left( 2 \right) \\
\end{align}$
Now, we will use the above formulas to simplify the given term.
We have the following equation:
$\begin{align}
& \cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} \\
& \Rightarrow \left( \cos \dfrac{\pi }{7}+\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{5\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7} \right)+\cos \pi \\
\end{align}$
Now, write $\dfrac{6\pi }{7}=\pi -\dfrac{\pi }{7}$ , $\dfrac{5\pi }{7}=\pi -\dfrac{2\pi }{7}$ and $\dfrac{4\pi }{7}=\pi -\dfrac{3\pi }{7}$ . Then,
$\begin{align}
& \left( \cos \dfrac{\pi }{7}+\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{5\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7} \right)+\cos \pi \\
& \Rightarrow \left( \cos \dfrac{\pi }{7}+\cos \left( \pi -\dfrac{\pi }{7} \right) \right)+\left( \cos \dfrac{2\pi }{7}+\cos \left( \pi -\dfrac{2\pi }{7} \right) \right)+\left( \cos \dfrac{3\pi }{7}+\cos \left( \pi -\dfrac{3\pi }{7} \right) \right)+\cos \pi \\
\end{align}$
Now, using the formula from the equation (1) in the above to simplify it. Then,
$\begin{align}
& \left( \cos \dfrac{\pi }{7}+\cos \left( \pi -\dfrac{\pi }{7} \right) \right)+\left( \cos \dfrac{2\pi }{7}+\cos \left( \pi -\dfrac{2\pi }{7} \right) \right)+\left( \cos \dfrac{3\pi }{7}+\cos \left( \pi -\dfrac{3\pi }{7} \right) \right)+\cos \pi \\
& \Rightarrow \left( \cos \dfrac{\pi }{7}-\cos \dfrac{\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{2\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}-\cos \dfrac{3\pi }{7} \right)+\cos \pi \\
& \Rightarrow \cos \pi \\
\end{align}$
Now, from the formula from the equation (2), we can write $\cos \pi =-1$ in the above to find the final answer. Then,
$\begin{align}
& \cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} \\
& \Rightarrow \cos \pi \\
& \Rightarrow -1 \\
\end{align}$
Now, from the above result, it is evident that the value of $\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7}$ will be equal to -1.
Hence, option (b) will be the correct option.
Note: Here, the student should first understand what is asked in the problem and then proceed in the right direction to get the correct answer quickly. Moreover, for objective problems, we should directly apply the formula that if $A+B=\pi $ , then $\cos A+\cos B=0$ for solving such types of problems directly without doing any long calculation.
Complete step-by-step answer:
Given:
We have to find the value of $\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7}$ .
Now, before we proceed we should know the following formulas:
$\begin{align}
& \cos \left( \theta \right)+\cos \left( \pi -\theta \right)=0..........\left( 1 \right) \\
& \cos \pi =-1..............................\left( 2 \right) \\
\end{align}$
Now, we will use the above formulas to simplify the given term.
We have the following equation:
$\begin{align}
& \cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} \\
& \Rightarrow \left( \cos \dfrac{\pi }{7}+\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{5\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7} \right)+\cos \pi \\
\end{align}$
Now, write $\dfrac{6\pi }{7}=\pi -\dfrac{\pi }{7}$ , $\dfrac{5\pi }{7}=\pi -\dfrac{2\pi }{7}$ and $\dfrac{4\pi }{7}=\pi -\dfrac{3\pi }{7}$ . Then,
$\begin{align}
& \left( \cos \dfrac{\pi }{7}+\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{5\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7} \right)+\cos \pi \\
& \Rightarrow \left( \cos \dfrac{\pi }{7}+\cos \left( \pi -\dfrac{\pi }{7} \right) \right)+\left( \cos \dfrac{2\pi }{7}+\cos \left( \pi -\dfrac{2\pi }{7} \right) \right)+\left( \cos \dfrac{3\pi }{7}+\cos \left( \pi -\dfrac{3\pi }{7} \right) \right)+\cos \pi \\
\end{align}$
Now, using the formula from the equation (1) in the above to simplify it. Then,
$\begin{align}
& \left( \cos \dfrac{\pi }{7}+\cos \left( \pi -\dfrac{\pi }{7} \right) \right)+\left( \cos \dfrac{2\pi }{7}+\cos \left( \pi -\dfrac{2\pi }{7} \right) \right)+\left( \cos \dfrac{3\pi }{7}+\cos \left( \pi -\dfrac{3\pi }{7} \right) \right)+\cos \pi \\
& \Rightarrow \left( \cos \dfrac{\pi }{7}-\cos \dfrac{\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{2\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}-\cos \dfrac{3\pi }{7} \right)+\cos \pi \\
& \Rightarrow \cos \pi \\
\end{align}$
Now, from the formula from the equation (2), we can write $\cos \pi =-1$ in the above to find the final answer. Then,
$\begin{align}
& \cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} \\
& \Rightarrow \cos \pi \\
& \Rightarrow -1 \\
\end{align}$
Now, from the above result, it is evident that the value of $\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7}$ will be equal to -1.
Hence, option (b) will be the correct option.
Note: Here, the student should first understand what is asked in the problem and then proceed in the right direction to get the correct answer quickly. Moreover, for objective problems, we should directly apply the formula that if $A+B=\pi $ , then $\cos A+\cos B=0$ for solving such types of problems directly without doing any long calculation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

