
The value of Bohr radius for hydrogen atom is:
(A)-\[0.529\times {{10}^{-8}}\text{cm}\]
(B)-\[0.529\times {{10}^{-10}}\text{cm}\]
(C)-\[0.529\times {{10}^{-6}}\text{cm}\]
(D)-\[0.529\times {{10}^{-12}}\text{cm}\]
Answer
575.4k+ views
Hint: The radius of the orbit around the nucleus on which the electron moves as described in Bohr’s model is called Bohr’s radius. This model was devised for a single-electron atom such as hydrogen \[(\text{H}),\text{H}{{\text{e}}^{+}},\text{L}{{\text{i}}^{2+}}\].
Complete step by step answer:
Bohr model was devised from the conclusion drawn from the gold foil experiment by Rutherford, wherein he concluded that the negative electrons are far away from the positive charge in the nucleus.
From the classical mechanical approach, he assumed the electrons to be orbiting around the nucleus with radius,\[r\].
These electrons face centrifugal forces during their circular motion around the nucleus which forces them away from it. It is given by:
\[{{F}_{centrifugal}}=-m{{v}^{2}}/r\]
where m is mass of the electron and v is its velocity.
For a stable atom in which the electron moves in the orbit (having stable energy state) without emitting radiation. Thus, this centrifugal force is opposed by the coulombic attraction which draws the electron inward, experienced between the electron and nucleus called the centripetal force. It is given by:
\[{{F}_{centripetal}}=-Z{{e}^{2}}/{{r}^{2}}\]
Equating the two forces, \[{{F}_{centrifugal}}={{F}_{centripetal}}\]
Rearranging the equation and solving for\[r\], we get
\[\dfrac{-m{{v}^{2}}}{r}=\dfrac{-Z{{e}^{2}}}{{{r}^{2}}}\]
\[r=\dfrac{m{{v}^{2}}{{r}^{2}}}{Z{{e}^{2}}}\]
Multiplying right hand side of the above equation by\[(m/m)\],we get
\[r=\dfrac{m{{v}^{2}}{{r}^{2}}}{Z{{e}^{2}}}\times \dfrac{m}{m}=\dfrac{{{(mvr)}^{2}}}{Z{{e}^{2}}m}\] --- (Equation 1)
Here \[(mvr)\]is the angular momentum of an electron.
For the quantization of the moving electron, Bohr’s second postulate was devised according to which the electron moves in orbit in which its angular momentum is equal to the integral multiple of\[h/2\pi \].
Therefore, angular momentum of the\[{{n}^{th}}\]orbit is \[(mvr)=nh/2\pi \]
where \[h=Planck's\text{ }constant=~6.6\times {{10}^{-34}}Js\]
\[n=\] permitted orbits on which electron revolve called principal quantum number
Now, substituting value of\[(mvr)=nh/2\pi \],in Equation 1:
\[r=\dfrac{{{n}^{2}}{{h}^{2}}}{4{{\pi }^{2}}Z{{e}^{2}}m}\]
For the hydrogen atom \[Z=1,\,n=1\], we get
\[r=\dfrac{{{h}^{2}}}{4{{\pi }^{2}}{{e}^{2}}m}=\dfrac{6.6\times {{10}^{-34}}\times \,\,6.6\times {{10}^{-34}}}{4\times 3.14\times 3.14\times 1.6\times {{10}^{-19}}\times 1.6\times {{10}^{-19}}\times 9.1\times {{10}^{-31}}}\]
\[r=\,\,0.59\times {{10}^{-10}}\text{m}\,\,\text{=}\,0.59\times {{10}^{-8}}\,\text{cm}\]
Therefore, the Bohr’s radius of hydrogen is option (A)- \[0.59\times {{10}^{-8}}\,\text{cm}\].
Note: While calculating the units of the terms must be in the standard form and change of units like from metre to centimetre must be done with utmost care keeping the decimal places in mind.
Complete step by step answer:
Bohr model was devised from the conclusion drawn from the gold foil experiment by Rutherford, wherein he concluded that the negative electrons are far away from the positive charge in the nucleus.
From the classical mechanical approach, he assumed the electrons to be orbiting around the nucleus with radius,\[r\].
These electrons face centrifugal forces during their circular motion around the nucleus which forces them away from it. It is given by:
\[{{F}_{centrifugal}}=-m{{v}^{2}}/r\]
where m is mass of the electron and v is its velocity.
For a stable atom in which the electron moves in the orbit (having stable energy state) without emitting radiation. Thus, this centrifugal force is opposed by the coulombic attraction which draws the electron inward, experienced between the electron and nucleus called the centripetal force. It is given by:
\[{{F}_{centripetal}}=-Z{{e}^{2}}/{{r}^{2}}\]
Equating the two forces, \[{{F}_{centrifugal}}={{F}_{centripetal}}\]
Rearranging the equation and solving for\[r\], we get
\[\dfrac{-m{{v}^{2}}}{r}=\dfrac{-Z{{e}^{2}}}{{{r}^{2}}}\]
\[r=\dfrac{m{{v}^{2}}{{r}^{2}}}{Z{{e}^{2}}}\]
Multiplying right hand side of the above equation by\[(m/m)\],we get
\[r=\dfrac{m{{v}^{2}}{{r}^{2}}}{Z{{e}^{2}}}\times \dfrac{m}{m}=\dfrac{{{(mvr)}^{2}}}{Z{{e}^{2}}m}\] --- (Equation 1)
Here \[(mvr)\]is the angular momentum of an electron.
For the quantization of the moving electron, Bohr’s second postulate was devised according to which the electron moves in orbit in which its angular momentum is equal to the integral multiple of\[h/2\pi \].
Therefore, angular momentum of the\[{{n}^{th}}\]orbit is \[(mvr)=nh/2\pi \]
where \[h=Planck's\text{ }constant=~6.6\times {{10}^{-34}}Js\]
\[n=\] permitted orbits on which electron revolve called principal quantum number
Now, substituting value of\[(mvr)=nh/2\pi \],in Equation 1:
\[r=\dfrac{{{n}^{2}}{{h}^{2}}}{4{{\pi }^{2}}Z{{e}^{2}}m}\]
For the hydrogen atom \[Z=1,\,n=1\], we get
\[r=\dfrac{{{h}^{2}}}{4{{\pi }^{2}}{{e}^{2}}m}=\dfrac{6.6\times {{10}^{-34}}\times \,\,6.6\times {{10}^{-34}}}{4\times 3.14\times 3.14\times 1.6\times {{10}^{-19}}\times 1.6\times {{10}^{-19}}\times 9.1\times {{10}^{-31}}}\]
\[r=\,\,0.59\times {{10}^{-10}}\text{m}\,\,\text{=}\,0.59\times {{10}^{-8}}\,\text{cm}\]
Therefore, the Bohr’s radius of hydrogen is option (A)- \[0.59\times {{10}^{-8}}\,\text{cm}\].
Note: While calculating the units of the terms must be in the standard form and change of units like from metre to centimetre must be done with utmost care keeping the decimal places in mind.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

The equivalent weight of Mohrs salt FeSO4 NH42SO4 6H2O class 11 chemistry CBSE

