
The sum of the exterior angles of a hexagon is:
(A) ${360^ \circ }$
(B) ${540^ \circ }$
(C) ${720^ \circ }$
(D) None of these
Answer
573.3k+ views
Hint: Hexagon is a polygon having six sides. Sum of its interior angles is ${720^ \circ }$. But the sum of exterior angles of any polygons is ${360^ \circ }$ irrespective of the number of sides in the polygon.
Complete step-by-step answer:
A hexagon is a polygon consisting of six sides. The total of the internal angles of a hexagon is ${720^ \circ }$.
If the hexagon is a regular hexagon, all the six sides of it are equal and all the six internal angles are also equal. And the measure of each angle is ${120^ \circ }$.
While the sum of interior angles of a polygon varies with the number of sides in a polygon, the sum of exterior angles remains the same for all polygons and it is ${360^ \circ }$.
In our case, if the hexagon is a regular hexagon, all the six exterior angles will be equal and each of them will measure ${60^ \circ }$. But if it is not regular, their values will differ. But the sum will always be the same which is ${360^ \circ }$.
Therefore, in the figure:
$ \Rightarrow a + b + c + d + e + f = {360^ \circ }$
(A) is the correct option.
Note: Sum of the interior angles of a polygon is determined by the formula $\left( {n - 2} \right) \times {180^ \circ }$ where $n$ is the number of sides in the polygon. And the sum of exterior angles is ${360^ \circ }$ irrespective of the number of sides in the polygon.
Complete step-by-step answer:
A hexagon is a polygon consisting of six sides. The total of the internal angles of a hexagon is ${720^ \circ }$.
If the hexagon is a regular hexagon, all the six sides of it are equal and all the six internal angles are also equal. And the measure of each angle is ${120^ \circ }$.
While the sum of interior angles of a polygon varies with the number of sides in a polygon, the sum of exterior angles remains the same for all polygons and it is ${360^ \circ }$.
In our case, if the hexagon is a regular hexagon, all the six exterior angles will be equal and each of them will measure ${60^ \circ }$. But if it is not regular, their values will differ. But the sum will always be the same which is ${360^ \circ }$.
Therefore, in the figure:
$ \Rightarrow a + b + c + d + e + f = {360^ \circ }$
(A) is the correct option.
Note: Sum of the interior angles of a polygon is determined by the formula $\left( {n - 2} \right) \times {180^ \circ }$ where $n$ is the number of sides in the polygon. And the sum of exterior angles is ${360^ \circ }$ irrespective of the number of sides in the polygon.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

