
The remainder left out when ${8^{2n}} - {\left( {62} \right)^{2n + 1}}$ is divided by 9 is
$\left( a \right)0$
$\left( b \right)2$
$\left( c \right)7$
$\left( d \right)8$
Answer
577.2k+ views
Hint: In this particular question use the concept of binomial expansion of ${\left( {1 + x} \right)^n}$which is given as ${}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + .........$ and write ${8^2} = 64 = \left( {1 + 63} \right)$ and 62 = (63 – 1) so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given equation
${8^{2n}} - {\left( {62} \right)^{2n + 1}}$
Now the above equation is also written as,
$ \Rightarrow {\left( {{8^2}} \right)^n} - {\left( {62} \right)^{2n + 1}}$
$ \Rightarrow {\left( {64} \right)^n} - {\left( {62} \right)^{2n + 1}}$
$ \Rightarrow {\left( {1 + 63} \right)^n} - {\left( {63 - 1} \right)^{2n + 1}}$
$ \Rightarrow {\left( {1 + 63} \right)^n} - {\left( { - 1} \right)^{2n + 1}}{\left( {1 - 63} \right)^{2n + 1}}$.................. (1)
Now as we know that ${\left( { - 1} \right)^2} = 1$
$ \Rightarrow {\left( { - 1} \right)^{2n + 1}} = {\left( { - 1} \right)^{2n}}\left( { - 1} \right) = {\left( {{{\left( { - 1} \right)}^2}} \right)^n}\left( { - 1} \right) = - 1{\left( 1 \right)^n} = - 1$ so use this value in equation (1) we have,
$ \Rightarrow {\left( {1 + 63} \right)^n} - \left( { - 1} \right){\left( {1 - 63} \right)^{2n + 1}}$
$ \Rightarrow {\left( {1 + 63} \right)^n} + {\left( {1 - 63} \right)^{2n + 1}}$
Now according to binomial theorem the expansion of ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + .........$ os use this property in the above equation we have,
$ \Rightarrow \left[ {{}^n{C_0} + {}^n{C_1}\left( {63} \right) + {}^n{C_2}{{\left( {63} \right)}^2} + .........} \right] + \left[ {{}^{2n + 1}{C_0} + {}^{2n + 1}{C_1}\left( { - 63} \right) + {}^{2n + 1}{C_2}{{\left( { - 63} \right)}^2} + .........} \right]$
Now as we know that that ${}^n{C_0} = {}^{2n + 1}{C_0} = 1$, $\left[ {\because {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}} \right]$ so we have,
$ \Rightarrow \left[ {1 + {}^n{C_1}\left( {63} \right) + {}^n{C_2}{{\left( {63} \right)}^2} + .........} \right] + \left[ {1 - {}^{2n + 1}{C_1}\left( {63} \right) + {}^{2n + 1}{C_2}{{\left( {63} \right)}^2} + .........} \right]$
$ \Rightarrow 2 + 63\left[ {\left( {{}^n{C_1} + {}^n{C_2}\left( {63} \right) + ...........} \right) + \left( { - {}^{2n + 1}{C_1} + {}^{2n + 1}{C_2}\left( {63} \right) + .........} \right)} \right]$
Now we have to find out the remainder when the above equation is divided by 9.
Now as we know that 63 is divisible by 9 seven (7) times, so $63\left[ {\left( {{}^n{C_1} + {}^n{C_2}\left( {63} \right) + ...........} \right) + \left( { - {}^{2n + 1}{C_1} + {}^{2n + 1}{C_2}\left( {63} \right) + .........} \right)} \right]$ is divisible by 9.
So in $2 + 63\left[ {\left( {{}^n{C_1} + {}^n{C_2}\left( {63} \right) + ...........} \right) + \left( { - {}^{2n + 1}{C_1} + {}^{2n + 1}{C_2}\left( {63} \right) + .........} \right)} \right]$only 2 is not divisible by 9.
So the remainder is 2 when ${8^{2n}} - {\left( {62} \right)^{2n + 1}}$ is divided by 9.
So this is the required answer.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the binomial expansion of ${\left( {1 + x} \right)^n}$ which is stated above, so apply this formula as above applied and arrange its terms we will get the required answer and the important point is to break the given expression in terms of multiple of 9.
Complete step-by-step solution:
Given equation
${8^{2n}} - {\left( {62} \right)^{2n + 1}}$
Now the above equation is also written as,
$ \Rightarrow {\left( {{8^2}} \right)^n} - {\left( {62} \right)^{2n + 1}}$
$ \Rightarrow {\left( {64} \right)^n} - {\left( {62} \right)^{2n + 1}}$
$ \Rightarrow {\left( {1 + 63} \right)^n} - {\left( {63 - 1} \right)^{2n + 1}}$
$ \Rightarrow {\left( {1 + 63} \right)^n} - {\left( { - 1} \right)^{2n + 1}}{\left( {1 - 63} \right)^{2n + 1}}$.................. (1)
Now as we know that ${\left( { - 1} \right)^2} = 1$
$ \Rightarrow {\left( { - 1} \right)^{2n + 1}} = {\left( { - 1} \right)^{2n}}\left( { - 1} \right) = {\left( {{{\left( { - 1} \right)}^2}} \right)^n}\left( { - 1} \right) = - 1{\left( 1 \right)^n} = - 1$ so use this value in equation (1) we have,
$ \Rightarrow {\left( {1 + 63} \right)^n} - \left( { - 1} \right){\left( {1 - 63} \right)^{2n + 1}}$
$ \Rightarrow {\left( {1 + 63} \right)^n} + {\left( {1 - 63} \right)^{2n + 1}}$
Now according to binomial theorem the expansion of ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + .........$ os use this property in the above equation we have,
$ \Rightarrow \left[ {{}^n{C_0} + {}^n{C_1}\left( {63} \right) + {}^n{C_2}{{\left( {63} \right)}^2} + .........} \right] + \left[ {{}^{2n + 1}{C_0} + {}^{2n + 1}{C_1}\left( { - 63} \right) + {}^{2n + 1}{C_2}{{\left( { - 63} \right)}^2} + .........} \right]$
Now as we know that that ${}^n{C_0} = {}^{2n + 1}{C_0} = 1$, $\left[ {\because {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}} \right]$ so we have,
$ \Rightarrow \left[ {1 + {}^n{C_1}\left( {63} \right) + {}^n{C_2}{{\left( {63} \right)}^2} + .........} \right] + \left[ {1 - {}^{2n + 1}{C_1}\left( {63} \right) + {}^{2n + 1}{C_2}{{\left( {63} \right)}^2} + .........} \right]$
$ \Rightarrow 2 + 63\left[ {\left( {{}^n{C_1} + {}^n{C_2}\left( {63} \right) + ...........} \right) + \left( { - {}^{2n + 1}{C_1} + {}^{2n + 1}{C_2}\left( {63} \right) + .........} \right)} \right]$
Now we have to find out the remainder when the above equation is divided by 9.
Now as we know that 63 is divisible by 9 seven (7) times, so $63\left[ {\left( {{}^n{C_1} + {}^n{C_2}\left( {63} \right) + ...........} \right) + \left( { - {}^{2n + 1}{C_1} + {}^{2n + 1}{C_2}\left( {63} \right) + .........} \right)} \right]$ is divisible by 9.
So in $2 + 63\left[ {\left( {{}^n{C_1} + {}^n{C_2}\left( {63} \right) + ...........} \right) + \left( { - {}^{2n + 1}{C_1} + {}^{2n + 1}{C_2}\left( {63} \right) + .........} \right)} \right]$only 2 is not divisible by 9.
So the remainder is 2 when ${8^{2n}} - {\left( {62} \right)^{2n + 1}}$ is divided by 9.
So this is the required answer.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the binomial expansion of ${\left( {1 + x} \right)^n}$ which is stated above, so apply this formula as above applied and arrange its terms we will get the required answer and the important point is to break the given expression in terms of multiple of 9.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

