
The pH of milk, black coffee, tomato juice, lemon juice, and egg white are 6.8,5.0, 4.2,2.2, and 7.8 respectively. Calculate the corresponding hydrogen ion concentration in each.
Answer
509.1k+ views
Hint: pH is a scale to measure the acidity and basicity of the aqueous solution. The term pH stands for the potential of hydrogen or as the power of hydrogen. The pH is a logarithmic value and it is inversely proportional to the concentration of hydrogen ions in the solution.
Complete step by step answer:
The hydrogen ion ${{\text{H}}^{\text{+}}}$ concentration in the solution is related to the pH of the solution. The pH and concentration ${{\text{H}}^{\text{+}}}$are related as,
$\text{pH=}\dfrac{\text{1}}{\text{log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}\text{=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }$
Where, \[\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ = concentration of hydrogen ion}\]
Here, we have to find the concentration of ${{\text{H}}^{\text{+}}}$an ion in given examples.
i)For milk,
We are provided with a pH of milk as 6.8
Since we know that,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{6}\text{.8=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-6}\text{.8=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-6}\text{.8}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.58}\times \text{1}{{\text{0}}^{\text{-7}}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{1}\text{.58}\times \text{1}{{\text{0}}^{\text{-7}}}\text{M}$.
iI)For black coffee,
We are provided with a pH of black coffee as 5.0
Since we know that ,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{5}\text{.0=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-5}\text{.0=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-5}\text{.0}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.00}\times \text{1}{{\text{0}}^{-5}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{1}\text{.00}\times \text{1}{{\text{0}}^{\text{-5}}}\text{M}$.
iii)For tomato juice,
We are provided with a pH of tomato juice as 4.2
Since we know that ,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{4}\text{.2=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-4}\text{.2=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-4}\text{.2}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =6}\text{.30}\times \text{1}{{\text{0}}^{-5}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{6}\text{.30}\times \text{1}{{\text{0}}^{\text{-5}}}\text{M}$.
iv)For the lemon juice,
We are provided with a pH of lemon juice as 2.2
Since we know that
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{2}\text{.2=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-2}\text{.2=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-2}\text{.2}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =6}\text{.30}\times \text{1}{{\text{0}}^{-3}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{6}\text{.30}\times \text{1}{{\text{0}}^{\text{-3}}}\text{M}$.
iv)For egg whites,
We are provided with the pH of egg whites as 7.8
Since we know that
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{7}\text{.8=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-7}\text{.8=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-7}\text{.8}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.58}\times \text{1}{{\text{0}}^{-8}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to$1.58\times \text{1}{{\text{0}}^{\text{-8}}}\text{M}$.
Additional Information:
The pH scale is used to measure the acidity and basicity of the solution. The scale has ranged from 0 to 14.
If \[\]\[\text{pH }\langle \text{ 7}\], the solution is acidic
If \[\text{pH }\rangle \text{ 7}\], the solution is basic
If \[\text{pH=7}\],the solution is neutral
Note: Students can face a problem in solving the logarithmic values and taking the antilog of value. Remember that pH is always logarithmic of ${{\text{H}}^{\text{+}}}$ concentration with base 10. When you are taking antilog then take the value of pH given as the negative power of 10.
Complete step by step answer:
The hydrogen ion ${{\text{H}}^{\text{+}}}$ concentration in the solution is related to the pH of the solution. The pH and concentration ${{\text{H}}^{\text{+}}}$are related as,
$\text{pH=}\dfrac{\text{1}}{\text{log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}\text{=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }$
Where, \[\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ = concentration of hydrogen ion}\]
Here, we have to find the concentration of ${{\text{H}}^{\text{+}}}$an ion in given examples.
i)For milk,
We are provided with a pH of milk as 6.8
Since we know that,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{6}\text{.8=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-6}\text{.8=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-6}\text{.8}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.58}\times \text{1}{{\text{0}}^{\text{-7}}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{1}\text{.58}\times \text{1}{{\text{0}}^{\text{-7}}}\text{M}$.
iI)For black coffee,
We are provided with a pH of black coffee as 5.0
Since we know that ,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{5}\text{.0=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-5}\text{.0=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-5}\text{.0}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.00}\times \text{1}{{\text{0}}^{-5}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{1}\text{.00}\times \text{1}{{\text{0}}^{\text{-5}}}\text{M}$.
iii)For tomato juice,
We are provided with a pH of tomato juice as 4.2
Since we know that ,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{4}\text{.2=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-4}\text{.2=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-4}\text{.2}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =6}\text{.30}\times \text{1}{{\text{0}}^{-5}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{6}\text{.30}\times \text{1}{{\text{0}}^{\text{-5}}}\text{M}$.
iv)For the lemon juice,
We are provided with a pH of lemon juice as 2.2
Since we know that
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{2}\text{.2=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-2}\text{.2=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-2}\text{.2}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =6}\text{.30}\times \text{1}{{\text{0}}^{-3}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{6}\text{.30}\times \text{1}{{\text{0}}^{\text{-3}}}\text{M}$.
iv)For egg whites,
We are provided with the pH of egg whites as 7.8
Since we know that
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{7}\text{.8=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-7}\text{.8=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-7}\text{.8}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.58}\times \text{1}{{\text{0}}^{-8}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to$1.58\times \text{1}{{\text{0}}^{\text{-8}}}\text{M}$.
Additional Information:
The pH scale is used to measure the acidity and basicity of the solution. The scale has ranged from 0 to 14.
If \[\]\[\text{pH }\langle \text{ 7}\], the solution is acidic
If \[\text{pH }\rangle \text{ 7}\], the solution is basic
If \[\text{pH=7}\],the solution is neutral
Note: Students can face a problem in solving the logarithmic values and taking the antilog of value. Remember that pH is always logarithmic of ${{\text{H}}^{\text{+}}}$ concentration with base 10. When you are taking antilog then take the value of pH given as the negative power of 10.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
