
The pH of milk, black coffee, tomato juice, lemon juice, and egg white are 6.8,5.0, 4.2,2.2, and 7.8 respectively. Calculate the corresponding hydrogen ion concentration in each.
Answer
579.9k+ views
Hint: pH is a scale to measure the acidity and basicity of the aqueous solution. The term pH stands for the potential of hydrogen or as the power of hydrogen. The pH is a logarithmic value and it is inversely proportional to the concentration of hydrogen ions in the solution.
Complete step by step answer:
The hydrogen ion ${{\text{H}}^{\text{+}}}$ concentration in the solution is related to the pH of the solution. The pH and concentration ${{\text{H}}^{\text{+}}}$are related as,
$\text{pH=}\dfrac{\text{1}}{\text{log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}\text{=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }$
Where, \[\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ = concentration of hydrogen ion}\]
Here, we have to find the concentration of ${{\text{H}}^{\text{+}}}$an ion in given examples.
i)For milk,
We are provided with a pH of milk as 6.8
Since we know that,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{6}\text{.8=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-6}\text{.8=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-6}\text{.8}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.58}\times \text{1}{{\text{0}}^{\text{-7}}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{1}\text{.58}\times \text{1}{{\text{0}}^{\text{-7}}}\text{M}$.
iI)For black coffee,
We are provided with a pH of black coffee as 5.0
Since we know that ,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{5}\text{.0=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-5}\text{.0=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-5}\text{.0}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.00}\times \text{1}{{\text{0}}^{-5}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{1}\text{.00}\times \text{1}{{\text{0}}^{\text{-5}}}\text{M}$.
iii)For tomato juice,
We are provided with a pH of tomato juice as 4.2
Since we know that ,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{4}\text{.2=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-4}\text{.2=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-4}\text{.2}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =6}\text{.30}\times \text{1}{{\text{0}}^{-5}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{6}\text{.30}\times \text{1}{{\text{0}}^{\text{-5}}}\text{M}$.
iv)For the lemon juice,
We are provided with a pH of lemon juice as 2.2
Since we know that
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{2}\text{.2=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-2}\text{.2=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-2}\text{.2}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =6}\text{.30}\times \text{1}{{\text{0}}^{-3}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{6}\text{.30}\times \text{1}{{\text{0}}^{\text{-3}}}\text{M}$.
iv)For egg whites,
We are provided with the pH of egg whites as 7.8
Since we know that
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{7}\text{.8=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-7}\text{.8=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-7}\text{.8}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.58}\times \text{1}{{\text{0}}^{-8}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to$1.58\times \text{1}{{\text{0}}^{\text{-8}}}\text{M}$.
Additional Information:
The pH scale is used to measure the acidity and basicity of the solution. The scale has ranged from 0 to 14.
If \[\]\[\text{pH }\langle \text{ 7}\], the solution is acidic
If \[\text{pH }\rangle \text{ 7}\], the solution is basic
If \[\text{pH=7}\],the solution is neutral
Note: Students can face a problem in solving the logarithmic values and taking the antilog of value. Remember that pH is always logarithmic of ${{\text{H}}^{\text{+}}}$ concentration with base 10. When you are taking antilog then take the value of pH given as the negative power of 10.
Complete step by step answer:
The hydrogen ion ${{\text{H}}^{\text{+}}}$ concentration in the solution is related to the pH of the solution. The pH and concentration ${{\text{H}}^{\text{+}}}$are related as,
$\text{pH=}\dfrac{\text{1}}{\text{log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}\text{=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }$
Where, \[\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ = concentration of hydrogen ion}\]
Here, we have to find the concentration of ${{\text{H}}^{\text{+}}}$an ion in given examples.
i)For milk,
We are provided with a pH of milk as 6.8
Since we know that,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{6}\text{.8=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-6}\text{.8=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-6}\text{.8}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.58}\times \text{1}{{\text{0}}^{\text{-7}}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{1}\text{.58}\times \text{1}{{\text{0}}^{\text{-7}}}\text{M}$.
iI)For black coffee,
We are provided with a pH of black coffee as 5.0
Since we know that ,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{5}\text{.0=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-5}\text{.0=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-5}\text{.0}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.00}\times \text{1}{{\text{0}}^{-5}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{1}\text{.00}\times \text{1}{{\text{0}}^{\text{-5}}}\text{M}$.
iii)For tomato juice,
We are provided with a pH of tomato juice as 4.2
Since we know that ,
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{4}\text{.2=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-4}\text{.2=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-4}\text{.2}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =6}\text{.30}\times \text{1}{{\text{0}}^{-5}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{6}\text{.30}\times \text{1}{{\text{0}}^{\text{-5}}}\text{M}$.
iv)For the lemon juice,
We are provided with a pH of lemon juice as 2.2
Since we know that
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{2}\text{.2=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-2}\text{.2=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-2}\text{.2}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =6}\text{.30}\times \text{1}{{\text{0}}^{-3}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to $\text{6}\text{.30}\times \text{1}{{\text{0}}^{\text{-3}}}\text{M}$.
iv)For egg whites,
We are provided with the pH of egg whites as 7.8
Since we know that
$\begin{align}
& \text{pH=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{7}\text{.8=-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
& \text{-7}\text{.8=log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ } \\
\end{align}$
Take an antilog on both sides,
$\begin{align}
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}{{\text{0}}^{\text{-7}\text{.8}}} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ =1}\text{.58}\times \text{1}{{\text{0}}^{-8}}\text{M} \\
\end{align}$
The concentration of ${{\text{H}}^{\text{+}}}$ milk is equal to$1.58\times \text{1}{{\text{0}}^{\text{-8}}}\text{M}$.
Additional Information:
The pH scale is used to measure the acidity and basicity of the solution. The scale has ranged from 0 to 14.
If \[\]\[\text{pH }\langle \text{ 7}\], the solution is acidic
If \[\text{pH }\rangle \text{ 7}\], the solution is basic
If \[\text{pH=7}\],the solution is neutral
Note: Students can face a problem in solving the logarithmic values and taking the antilog of value. Remember that pH is always logarithmic of ${{\text{H}}^{\text{+}}}$ concentration with base 10. When you are taking antilog then take the value of pH given as the negative power of 10.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Whiptails disease in cauliflower is noted due to deficiency class 11 biology CBSE

