
The perimeter of a school volleyball court is $ 177 $ ft. and the length is twice the width. What are the dimensions of the volleyball court?
Answer
580.5k+ views
Hint: In this problem we need to find the dimensions of the volleyball court. That is, we have to find length and width. For this, we will use the formula of perimeter of rectangle because a volleyball court is shaped like a rectangle. Also we will use the given information that the length is twice the width.
Complete step-by-step answer:
Let us assume that $ l $ is the length (in ft.) and $ w $ is the width (in ft.) of a school volleyball court. A volleyball court is shaped like a rectangle. So, we will use the formula of perimeter of the rectangle. We know that the perimeter $ P $ of a rectangle is given by $ P = 2\left( {l + w} \right) $ where $ l $ is the length and $ w $ is the width of a rectangle. So, in this problem we can say that the perimeter of a school volleyball court is $ P = 2\left( {l + w} \right) \cdots \cdots \left( 1 \right) $ .
In the problem it is given that the perimeter of a school volleyball court is $ 177 $ (in ft.). So, from $ \left( 1 \right) $ we can write $ 177 = 2\left( {l + w} \right) \cdots \cdots \left( 2 \right) $ .
Also given that the length $ l $ is twice the width $ w $ . So, we can write $ l = 2w $ . Now we are going to substitute $ l = 2w $ in equation $ \left( 2 \right) $ , we get
$
177 = 2\left( {2w + w} \right) \\
\Rightarrow 177 = 2\left( {3w} \right) \\
\Rightarrow 177 = 6w \cdots \cdots \left( 3 \right) \\
$
We can see that the equation $ \left( 3 \right) $ is linear equation in one variable. Let us solve this equation and find $ w $ . For this, we will divide by $ 6 $ on both sides of equation $ \left( 3 \right) $ . So, we get
$
\dfrac{{177}}{6} = \dfrac{{6w}}{6} \\
\Rightarrow w = 29.5 \\
$
Now we substitute width $ w = 29.5 $ ft. in $ l = 2w $ to find the length $ l $ . Therefore, we get $ l = 2\left( {29.5} \right) = 59 $ ft.
Therefore, the length of a school volleyball court is $ 59 $ ft. and the width of a school volleyball court is $ 29.5 $ ft.
Note: The sum of length of all sides of a rectangle is called the perimeter of a rectangle. In a rectangle, there are two parallel (opposite) sides with equal length. Also there are four right angles. The area of a rectangle is given by $ A = l \times w $ where $ l $ is the length and $ w $ is the width of a rectangle.
Complete step-by-step answer:
Let us assume that $ l $ is the length (in ft.) and $ w $ is the width (in ft.) of a school volleyball court. A volleyball court is shaped like a rectangle. So, we will use the formula of perimeter of the rectangle. We know that the perimeter $ P $ of a rectangle is given by $ P = 2\left( {l + w} \right) $ where $ l $ is the length and $ w $ is the width of a rectangle. So, in this problem we can say that the perimeter of a school volleyball court is $ P = 2\left( {l + w} \right) \cdots \cdots \left( 1 \right) $ .
In the problem it is given that the perimeter of a school volleyball court is $ 177 $ (in ft.). So, from $ \left( 1 \right) $ we can write $ 177 = 2\left( {l + w} \right) \cdots \cdots \left( 2 \right) $ .
Also given that the length $ l $ is twice the width $ w $ . So, we can write $ l = 2w $ . Now we are going to substitute $ l = 2w $ in equation $ \left( 2 \right) $ , we get
$
177 = 2\left( {2w + w} \right) \\
\Rightarrow 177 = 2\left( {3w} \right) \\
\Rightarrow 177 = 6w \cdots \cdots \left( 3 \right) \\
$
We can see that the equation $ \left( 3 \right) $ is linear equation in one variable. Let us solve this equation and find $ w $ . For this, we will divide by $ 6 $ on both sides of equation $ \left( 3 \right) $ . So, we get
$
\dfrac{{177}}{6} = \dfrac{{6w}}{6} \\
\Rightarrow w = 29.5 \\
$
Now we substitute width $ w = 29.5 $ ft. in $ l = 2w $ to find the length $ l $ . Therefore, we get $ l = 2\left( {29.5} \right) = 59 $ ft.
Therefore, the length of a school volleyball court is $ 59 $ ft. and the width of a school volleyball court is $ 29.5 $ ft.
Note: The sum of length of all sides of a rectangle is called the perimeter of a rectangle. In a rectangle, there are two parallel (opposite) sides with equal length. Also there are four right angles. The area of a rectangle is given by $ A = l \times w $ where $ l $ is the length and $ w $ is the width of a rectangle.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE


