
The number of real solutions of the equation, \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\] lying in the interval $\left( -\dfrac{1}{2},\dfrac{1}{2} \right)$ is,
Answer
576.6k+ views
Hint: To solve this question first we will reduce the given equation into simplest form by using inverse trigonometric identity \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\], then we will expand the expansion and using sum of infinite G.P we will obtain the algebraic expression and then we will see how many root we obtain for that algebraic equation.
Complete step-by-step answer:
Now, we have \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\]
Let, $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$ and $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$
So, we can write \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\] as,
\[{{\sin }^{-1}}f(x)=\dfrac{\pi }{2}-{{\cos }^{-1}}g(x)\]
We know that, \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\],
So, re – writing \[{{\sin }^{-1}}f(x)=\dfrac{\pi }{2}-{{\cos }^{-1}}g(x)\] as,
\[{{\sin }^{-1}}f(x)={{\sin }^{-1}}g(x)\]
Now, we know that \[{{\sin }^{-1}}x\] is one - one function, so it is only true for \[{{\sin }^{-1}}f(x)={{\sin }^{-1}}g(x)\],
if $f(x)=g(x)$ , that is
$\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$
Now, let us take $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
We can write f(x) as, $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i}}\cdot x-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
Or, $f(x)=x\sum\limits_{i=1}^{\infty }{{{x}^{i}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
Now, $\sum\limits_{i=1}^{\infty }{{{x}^{i}}}$is G.P whose first term is x and common ratio is x,
So, \[x\sum\limits_{i=1}^{\infty }{{{x}^{i}}}=\dfrac{{{x}^{2}}}{1-x}\], as Sum of infinite G.P is $\dfrac{a}{1-r}$, whose first term is a and common ratio is r.
Similarly, $\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$is G.P whose first term is $\dfrac{x}{2}$ and common ratio is $\dfrac{x}{2}$,
So, $x\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\dfrac{\dfrac{{{x}^{2}}}{2}}{1-\left( \dfrac{x}{2} \right)}=\dfrac{{{x}^{2}}}{2-x}$.
So, $f(x)=x\sum\limits_{i=1}^{\infty }{{{x}^{i}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}$
Now, in $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$ and $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$, there is only difference in sign,
So, $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}=\dfrac{-\dfrac{x}{2}}{1-\left( -\dfrac{x}{2} \right)}+\dfrac{x}{1-(-x)}$
Or on simplifying, we get
$g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}=\dfrac{x}{1+x}-\dfrac{x}{2+x}$
As, we have $f(x)=g(x)$
So, $\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}=\dfrac{x}{1+x}-\dfrac{x}{2+x}$
Now, we have to solve this algebraic expression,
Taking all expression on left side,
$\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}-\dfrac{x}{1+x}+\dfrac{x}{2+x}=0$
Taking, x common, we get
$x\cdot \left( \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x} \right)=0$
So, x = 0 and $\left( \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x} \right)=0$
Now, \[\begin{align}
& \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x}=0 \\
& \dfrac{x}{1-x}-\dfrac{x}{2-x}=\dfrac{1}{1+x}-\dfrac{1}{2+x} \\
\end{align}\]
Taking L.C.M, we get
$\dfrac{2x-{{x}^{2}}-x+{{x}^{2}}}{(x-2)(x-1)}=\dfrac{-1-x+2+x}{(x-2)(x-1)}$
On solving we get
$\dfrac{x}{(x-2)(x-1)}=\dfrac{1}{(x-2)(x-1)}$
On cross – multiplying, we get
$x(x-2)(x-1)=(x-2)(x-1)$
On opening brackets, we get
${{x}^{3}}+2{{x}^{2}}+5x-2=0$
Let, $f(x)={{x}^{3}}+2{{x}^{2}}+5x-2$
Now, at $x=-\dfrac{1}{2}$ , we get
$f(-\dfrac{1}{2})={{\left( -\dfrac{1}{2} \right)}^{3}}+2{{\left( -\dfrac{1}{2} \right)}^{2}}+5\left( -\dfrac{1}{2} \right)-2=-\dfrac{1}{8}+\dfrac{1}{2}-\dfrac{5}{2}-2=-\dfrac{33}{8}$
at $x=\dfrac{1}{2}$ , we get
$f(\dfrac{1}{2})={{\left( \dfrac{1}{2} \right)}^{3}}+2{{\left( \dfrac{1}{2} \right)}^{2}}+5\left( \dfrac{1}{2} \right)-2=\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{5}{2}-2=\dfrac{9}{8}$
Now, $f(-\dfrac{1}{2})\cdot f(\dfrac{1}{2})<0$, which means there exists one root in interval and one is x = 0.
So, we have two solutions for equation \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\]
Note: To, solve such question one must know the inverse trigonometric function properties such as \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\] and also how to open summation and what is sum of infinite geometric expansion which is equals to $\dfrac{a}{1-r}$, whose first term is a and common ratio is r.
Complete step-by-step answer:
Now, we have \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\]
Let, $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$ and $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$
So, we can write \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\] as,
\[{{\sin }^{-1}}f(x)=\dfrac{\pi }{2}-{{\cos }^{-1}}g(x)\]
We know that, \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\],
So, re – writing \[{{\sin }^{-1}}f(x)=\dfrac{\pi }{2}-{{\cos }^{-1}}g(x)\] as,
\[{{\sin }^{-1}}f(x)={{\sin }^{-1}}g(x)\]
Now, we know that \[{{\sin }^{-1}}x\] is one - one function, so it is only true for \[{{\sin }^{-1}}f(x)={{\sin }^{-1}}g(x)\],
if $f(x)=g(x)$ , that is
$\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$
Now, let us take $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
We can write f(x) as, $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i}}\cdot x-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
Or, $f(x)=x\sum\limits_{i=1}^{\infty }{{{x}^{i}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
Now, $\sum\limits_{i=1}^{\infty }{{{x}^{i}}}$is G.P whose first term is x and common ratio is x,
So, \[x\sum\limits_{i=1}^{\infty }{{{x}^{i}}}=\dfrac{{{x}^{2}}}{1-x}\], as Sum of infinite G.P is $\dfrac{a}{1-r}$, whose first term is a and common ratio is r.
Similarly, $\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$is G.P whose first term is $\dfrac{x}{2}$ and common ratio is $\dfrac{x}{2}$,
So, $x\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\dfrac{\dfrac{{{x}^{2}}}{2}}{1-\left( \dfrac{x}{2} \right)}=\dfrac{{{x}^{2}}}{2-x}$.
So, $f(x)=x\sum\limits_{i=1}^{\infty }{{{x}^{i}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}$
Now, in $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$ and $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$, there is only difference in sign,
So, $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}=\dfrac{-\dfrac{x}{2}}{1-\left( -\dfrac{x}{2} \right)}+\dfrac{x}{1-(-x)}$
Or on simplifying, we get
$g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}=\dfrac{x}{1+x}-\dfrac{x}{2+x}$
As, we have $f(x)=g(x)$
So, $\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}=\dfrac{x}{1+x}-\dfrac{x}{2+x}$
Now, we have to solve this algebraic expression,
Taking all expression on left side,
$\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}-\dfrac{x}{1+x}+\dfrac{x}{2+x}=0$
Taking, x common, we get
$x\cdot \left( \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x} \right)=0$
So, x = 0 and $\left( \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x} \right)=0$
Now, \[\begin{align}
& \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x}=0 \\
& \dfrac{x}{1-x}-\dfrac{x}{2-x}=\dfrac{1}{1+x}-\dfrac{1}{2+x} \\
\end{align}\]
Taking L.C.M, we get
$\dfrac{2x-{{x}^{2}}-x+{{x}^{2}}}{(x-2)(x-1)}=\dfrac{-1-x+2+x}{(x-2)(x-1)}$
On solving we get
$\dfrac{x}{(x-2)(x-1)}=\dfrac{1}{(x-2)(x-1)}$
On cross – multiplying, we get
$x(x-2)(x-1)=(x-2)(x-1)$
On opening brackets, we get
${{x}^{3}}+2{{x}^{2}}+5x-2=0$
Let, $f(x)={{x}^{3}}+2{{x}^{2}}+5x-2$
Now, at $x=-\dfrac{1}{2}$ , we get
$f(-\dfrac{1}{2})={{\left( -\dfrac{1}{2} \right)}^{3}}+2{{\left( -\dfrac{1}{2} \right)}^{2}}+5\left( -\dfrac{1}{2} \right)-2=-\dfrac{1}{8}+\dfrac{1}{2}-\dfrac{5}{2}-2=-\dfrac{33}{8}$
at $x=\dfrac{1}{2}$ , we get
$f(\dfrac{1}{2})={{\left( \dfrac{1}{2} \right)}^{3}}+2{{\left( \dfrac{1}{2} \right)}^{2}}+5\left( \dfrac{1}{2} \right)-2=\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{5}{2}-2=\dfrac{9}{8}$
Now, $f(-\dfrac{1}{2})\cdot f(\dfrac{1}{2})<0$, which means there exists one root in interval and one is x = 0.
So, we have two solutions for equation \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\]
Note: To, solve such question one must know the inverse trigonometric function properties such as \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\] and also how to open summation and what is sum of infinite geometric expansion which is equals to $\dfrac{a}{1-r}$, whose first term is a and common ratio is r.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

