
The number of real solutions of the equation, \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\] lying in the interval $\left( -\dfrac{1}{2},\dfrac{1}{2} \right)$ is,
Answer
511.8k+ views
Hint: To solve this question first we will reduce the given equation into simplest form by using inverse trigonometric identity \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\], then we will expand the expansion and using sum of infinite G.P we will obtain the algebraic expression and then we will see how many root we obtain for that algebraic equation.
Complete step-by-step answer:
Now, we have \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\]
Let, $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$ and $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$
So, we can write \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\] as,
\[{{\sin }^{-1}}f(x)=\dfrac{\pi }{2}-{{\cos }^{-1}}g(x)\]
We know that, \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\],
So, re – writing \[{{\sin }^{-1}}f(x)=\dfrac{\pi }{2}-{{\cos }^{-1}}g(x)\] as,
\[{{\sin }^{-1}}f(x)={{\sin }^{-1}}g(x)\]
Now, we know that \[{{\sin }^{-1}}x\] is one - one function, so it is only true for \[{{\sin }^{-1}}f(x)={{\sin }^{-1}}g(x)\],
if $f(x)=g(x)$ , that is
$\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$
Now, let us take $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
We can write f(x) as, $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i}}\cdot x-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
Or, $f(x)=x\sum\limits_{i=1}^{\infty }{{{x}^{i}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
Now, $\sum\limits_{i=1}^{\infty }{{{x}^{i}}}$is G.P whose first term is x and common ratio is x,
So, \[x\sum\limits_{i=1}^{\infty }{{{x}^{i}}}=\dfrac{{{x}^{2}}}{1-x}\], as Sum of infinite G.P is $\dfrac{a}{1-r}$, whose first term is a and common ratio is r.
Similarly, $\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$is G.P whose first term is $\dfrac{x}{2}$ and common ratio is $\dfrac{x}{2}$,
So, $x\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\dfrac{\dfrac{{{x}^{2}}}{2}}{1-\left( \dfrac{x}{2} \right)}=\dfrac{{{x}^{2}}}{2-x}$.
So, $f(x)=x\sum\limits_{i=1}^{\infty }{{{x}^{i}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}$
Now, in $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$ and $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$, there is only difference in sign,
So, $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}=\dfrac{-\dfrac{x}{2}}{1-\left( -\dfrac{x}{2} \right)}+\dfrac{x}{1-(-x)}$
Or on simplifying, we get
$g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}=\dfrac{x}{1+x}-\dfrac{x}{2+x}$
As, we have $f(x)=g(x)$
So, $\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}=\dfrac{x}{1+x}-\dfrac{x}{2+x}$
Now, we have to solve this algebraic expression,
Taking all expression on left side,
$\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}-\dfrac{x}{1+x}+\dfrac{x}{2+x}=0$
Taking, x common, we get
$x\cdot \left( \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x} \right)=0$
So, x = 0 and $\left( \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x} \right)=0$
Now, \[\begin{align}
& \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x}=0 \\
& \dfrac{x}{1-x}-\dfrac{x}{2-x}=\dfrac{1}{1+x}-\dfrac{1}{2+x} \\
\end{align}\]
Taking L.C.M, we get
$\dfrac{2x-{{x}^{2}}-x+{{x}^{2}}}{(x-2)(x-1)}=\dfrac{-1-x+2+x}{(x-2)(x-1)}$
On solving we get
$\dfrac{x}{(x-2)(x-1)}=\dfrac{1}{(x-2)(x-1)}$
On cross – multiplying, we get
$x(x-2)(x-1)=(x-2)(x-1)$
On opening brackets, we get
${{x}^{3}}+2{{x}^{2}}+5x-2=0$
Let, $f(x)={{x}^{3}}+2{{x}^{2}}+5x-2$
Now, at $x=-\dfrac{1}{2}$ , we get
$f(-\dfrac{1}{2})={{\left( -\dfrac{1}{2} \right)}^{3}}+2{{\left( -\dfrac{1}{2} \right)}^{2}}+5\left( -\dfrac{1}{2} \right)-2=-\dfrac{1}{8}+\dfrac{1}{2}-\dfrac{5}{2}-2=-\dfrac{33}{8}$
at $x=\dfrac{1}{2}$ , we get
$f(\dfrac{1}{2})={{\left( \dfrac{1}{2} \right)}^{3}}+2{{\left( \dfrac{1}{2} \right)}^{2}}+5\left( \dfrac{1}{2} \right)-2=\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{5}{2}-2=\dfrac{9}{8}$
Now, $f(-\dfrac{1}{2})\cdot f(\dfrac{1}{2})<0$, which means there exists one root in interval and one is x = 0.
So, we have two solutions for equation \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\]
Note: To, solve such question one must know the inverse trigonometric function properties such as \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\] and also how to open summation and what is sum of infinite geometric expansion which is equals to $\dfrac{a}{1-r}$, whose first term is a and common ratio is r.
Complete step-by-step answer:
Now, we have \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\]
Let, $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$ and $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$
So, we can write \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\] as,
\[{{\sin }^{-1}}f(x)=\dfrac{\pi }{2}-{{\cos }^{-1}}g(x)\]
We know that, \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\],
So, re – writing \[{{\sin }^{-1}}f(x)=\dfrac{\pi }{2}-{{\cos }^{-1}}g(x)\] as,
\[{{\sin }^{-1}}f(x)={{\sin }^{-1}}g(x)\]
Now, we know that \[{{\sin }^{-1}}x\] is one - one function, so it is only true for \[{{\sin }^{-1}}f(x)={{\sin }^{-1}}g(x)\],
if $f(x)=g(x)$ , that is
$\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$
Now, let us take $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
We can write f(x) as, $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i}}\cdot x-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
Or, $f(x)=x\sum\limits_{i=1}^{\infty }{{{x}^{i}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$
Now, $\sum\limits_{i=1}^{\infty }{{{x}^{i}}}$is G.P whose first term is x and common ratio is x,
So, \[x\sum\limits_{i=1}^{\infty }{{{x}^{i}}}=\dfrac{{{x}^{2}}}{1-x}\], as Sum of infinite G.P is $\dfrac{a}{1-r}$, whose first term is a and common ratio is r.
Similarly, $\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$is G.P whose first term is $\dfrac{x}{2}$ and common ratio is $\dfrac{x}{2}$,
So, $x\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\dfrac{\dfrac{{{x}^{2}}}{2}}{1-\left( \dfrac{x}{2} \right)}=\dfrac{{{x}^{2}}}{2-x}$.
So, $f(x)=x\sum\limits_{i=1}^{\infty }{{{x}^{i}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}=\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}$
Now, in $f(x)=\sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}}$ and $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}$, there is only difference in sign,
So, $g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}=\dfrac{-\dfrac{x}{2}}{1-\left( -\dfrac{x}{2} \right)}+\dfrac{x}{1-(-x)}$
Or on simplifying, we get
$g(x)=\sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}}=\dfrac{x}{1+x}-\dfrac{x}{2+x}$
As, we have $f(x)=g(x)$
So, $\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}=\dfrac{x}{1+x}-\dfrac{x}{2+x}$
Now, we have to solve this algebraic expression,
Taking all expression on left side,
$\dfrac{{{x}^{2}}}{1-x}-\dfrac{{{x}^{2}}}{2-x}-\dfrac{x}{1+x}+\dfrac{x}{2+x}=0$
Taking, x common, we get
$x\cdot \left( \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x} \right)=0$
So, x = 0 and $\left( \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x} \right)=0$
Now, \[\begin{align}
& \dfrac{x}{1-x}-\dfrac{x}{2-x}-\dfrac{1}{1+x}+\dfrac{1}{2+x}=0 \\
& \dfrac{x}{1-x}-\dfrac{x}{2-x}=\dfrac{1}{1+x}-\dfrac{1}{2+x} \\
\end{align}\]
Taking L.C.M, we get
$\dfrac{2x-{{x}^{2}}-x+{{x}^{2}}}{(x-2)(x-1)}=\dfrac{-1-x+2+x}{(x-2)(x-1)}$
On solving we get
$\dfrac{x}{(x-2)(x-1)}=\dfrac{1}{(x-2)(x-1)}$
On cross – multiplying, we get
$x(x-2)(x-1)=(x-2)(x-1)$
On opening brackets, we get
${{x}^{3}}+2{{x}^{2}}+5x-2=0$
Let, $f(x)={{x}^{3}}+2{{x}^{2}}+5x-2$
Now, at $x=-\dfrac{1}{2}$ , we get
$f(-\dfrac{1}{2})={{\left( -\dfrac{1}{2} \right)}^{3}}+2{{\left( -\dfrac{1}{2} \right)}^{2}}+5\left( -\dfrac{1}{2} \right)-2=-\dfrac{1}{8}+\dfrac{1}{2}-\dfrac{5}{2}-2=-\dfrac{33}{8}$
at $x=\dfrac{1}{2}$ , we get
$f(\dfrac{1}{2})={{\left( \dfrac{1}{2} \right)}^{3}}+2{{\left( \dfrac{1}{2} \right)}^{2}}+5\left( \dfrac{1}{2} \right)-2=\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{5}{2}-2=\dfrac{9}{8}$
Now, $f(-\dfrac{1}{2})\cdot f(\dfrac{1}{2})<0$, which means there exists one root in interval and one is x = 0.
So, we have two solutions for equation \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x}^{i+1}}-x}\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{x}{2} \right)}^{i}}} \right)=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{\left( -\dfrac{x}{2} \right)}^{i}}-\sum\limits_{i=1}^{\infty }{{{(-x)}^{i}}}} \right)\]
Note: To, solve such question one must know the inverse trigonometric function properties such as \[{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\cos }^{-1}}x\] and also how to open summation and what is sum of infinite geometric expansion which is equals to $\dfrac{a}{1-r}$, whose first term is a and common ratio is r.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
