
The number of integral values of m for which the quadratic expression:
\[\left( 1+2m \right){{x}^{2}}-2\left( 1+3m \right)x+4\left( 1+m \right):x\in R\] is always positive is
A. 8
B. 7
C. 6
D. 3
Answer
575.4k+ views
Hint: To solve this question, we will use the fact that, for any quadratic equation of the form $a{{x}^{2}}+bx+c$ to be positive we have $a>0$ and D discriminant which is ${{b}^{2}}-4ac<0$. We will compare this two values in our given equation and then try to find the value of m in some range. Also, we will use that if any equation $a{{x}^{2}}+bx+c$ has its root as \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
A quadratic equation of the form $a{{x}^{2}}+bx+c$ is always positive if $a>0$ and its discriminant $D<0$
We have discriminant D of $a{{x}^{2}}+bx+c$ the form $D={{b}^{2}}-4ac$
So, a quadratic expression of the form $a{{x}^{2}}+bx+c$ is always positive if $a>0\text{ and }{{b}^{2}}-4ac<0$
Complete step-by-step solution:
We are given our quadratic expression as:
\[\left( 1+2m \right){{x}^{2}}-2\left( 1+3m \right)x+4\left( 1+m \right)\]
Comparing it from $a{{x}^{2}}+bx+c$ we have
\[\begin{align}
& a=\left( 1+2m \right) \\
& b=-2\left( 1+3m \right) \\
& c=4\left( 1+m \right) \\
\end{align}\]
From above theory we have the quadratic expression \[\left( 1+2m \right){{x}^{2}}-2\left( 1+3m \right)x+4\left( 1+m \right)\] is always positive if $a>0$ is \[\left( 1+2m \right)>0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\] and discriminant \[D={{b}^{2}}-4ac<0\] that is \[{{\left( -2\left( 1+3m \right) \right)}^{2}}-4\times \left( 1+2m \right)4\left( 1+m \right)<0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
So, we have now to solve equation (i) and (ii) to get out integral values of m.
From equation (i) we have
\[1+2m>0\Rightarrow 2m>-1\]
Dividing by 2 both sides we get:
\[m>\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Consider equation (ii) now, we have
\[\begin{align}
& {{\left( -2\left( 1+3m \right) \right)}^{2}}-4\times \left( 1+2m \right)4\left( 1+m \right)<0 \\
& \Rightarrow 4{{\left( 1+3m \right)}^{2}}-16\left( 1+2m \right)\left( 1+m \right)<0 \\
\end{align}\]
Opening square using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ we get:
\[\Rightarrow 4\left( 1+9{{m}^{2}}+6m \right)-16\left( 1+m \right)\left( 1+2m \right)<0\]
Multiplying the brackets and solving further we get:
\[\begin{align}
& 4+36{{m}^{2}}+24m-16\left( 1+2m+m+2{{m}^{2}} \right)<0 \\
& \Rightarrow 4+36{{m}^{2}}+24m-16-48m-32{{m}^{2}}<0 \\
\end{align}\]
Taking terms having ${{m}^{2}},m$ one side we have:
\[\begin{align}
& \left( 36-32 \right){{m}^{2}}+\left( 24-48 \right)m+4-16<0 \\
& \Rightarrow 4{{m}^{2}}+\left( -24m \right)-12<0 \\
\end{align}\]
Taking 4 common we get:
\[4\left( {{m}^{2}}-6m-3 \right)<0\]
Now as \[4\ne 0\text{ and }4>0\Rightarrow {{m}^{2}}-6m-3<0\]
We have roots of quadratic equation $a{{x}^{2}}+bx+c$ as
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
Comparing this for above equation ${{m}^{2}}-6m-3$ we get roots as:
\[\begin{align}
& m=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 1\times(-3)}}{2\times 1} \\
& \Rightarrow m=\dfrac{6\pm \sqrt{36+12}}{2} \\
& \Rightarrow m=\dfrac{6\pm \sqrt{48}}{2} \\
\end{align}\]
Taking LCM of 48 as:
\[\begin{align}
& \begin{matrix}
2 \\
2 \\
2 \\
\end{matrix}\begin{matrix}
\left| \underline {48} \right. \\
\left| \underline {24} \right. \\
\left| \underline {12} \right. \\
\end{matrix} \\
& \begin{matrix}
2 \\
2 \\
\end{matrix}\begin{matrix}
\left|\underline 6 \right. \\
\left|\underline 3 \right. \\
\end{matrix} \\
& 1 \\
\end{align}\]
We have,
\[\begin{align}
& 48=2\times 2\times 2\times 2\times 3 \\
& \Rightarrow \sqrt{48}=2\times 2\sqrt{3}=4\sqrt{3} \\
\end{align}\]
So, we have \[\sqrt{48}=4\sqrt{3}\]
So, we have the value of $m=\dfrac{6\pm 4\sqrt{3}}{2}$
Taking 2 common from numerator and denominator we get:
\[\begin{align}
& m=\dfrac{\left( 3\pm 2\sqrt{3} \right)}{{}} \\
& m=3\pm 2\sqrt{3} \\
\end{align}\]
As, we had ${{m}^{2}}-6m-3<0$ then this can be written as
\[\left( m-\left( 3+2\sqrt{3} \right) \right)\left( m-\left( 3-2\sqrt{3} \right) \right)<0\]
Product of two terms is less than 0 then it implies that;
If \[\left( x-a \right)\left( x-b \right)<0\Rightarrow a\text{ }<\text{ }x\text{ }<\text{ }b\]
So, using this in above we have:
\[\begin{align}
& \left( m-\left( 3+2\sqrt{3} \right) \right)\left( m-\left( 3-2\sqrt{3} \right) \right)\text{ }<\text{ }0 \\
& \Rightarrow 3-2\sqrt{3}\text{ }<\text{ }m\text{ }<\text{ }3+2\sqrt{3} \\
\end{align}\]
As here we had $3-2\sqrt{3}\text{ }<\text{ }m\text{ }<\text{ }3+2\sqrt{3}$
Hence, finally we have m as \[\Rightarrow 3-2\sqrt{3}\text{ }<\text{ }m\text{ }<\text{ }3+2\sqrt{3}\]
Opening $3-2\sqrt{3}$ and using $\sqrt{3}=1.732$ we get:
\[\begin{align}
& 3-2\times 1.732=3-3.464=-0.464 \\
& \text{and }3+2\times 1.732=3+3.464=6.464 \\
\end{align}\]
Then, value of m lies as:
\[-0.464\text{ }<\text{ }m\text{ }<\text{ }6.464\]
All integral values of m lying in their range is
\[m=0,1,2,3,4,5,6\]
So, we have 7 integral values of m possible such that,
\[\left( 1+2m \right){{x}^{2}}-2\left( 1+3m \right)x+4\left( 1+m \right)\text{ is positive}\]
Also, from equation (iii) we had \[m\text{ }>\text{ }\dfrac{-1}{2}\Rightarrow m\text{ }>\text{ }-0.5\]
So, anyway above values are valid.
Therefore, there are 7 integral values of m possible. Option B is correct.
Note: The student can make mistake at the point where \[\left( m-\left( 3+2\sqrt{3} \right) \right)\left( m-\left( 3-2\sqrt{3} \right) \right)<0\] is considered. This step does not imply that both \[\left( m-\left( 3+2\sqrt{3} \right) \right)\text{ and }\left( m-\left( 3-2\sqrt{3} \right) \right)\] are negative. Because if product of two numbers is negative then there is a possibility of one of them to be positive. Therefore, we will not use both \[\left( m-\left( 3+2\sqrt{3} \right) \right)\left( m-\left( 3-2\sqrt{3} \right) \right)<0\] to be negative.
There is one more key point that, if the roots of quadratic equation are $\alpha \text{ and }\beta $ then the quadratic equation $a{{x}^{2}}+bx+c$ can be written as $\left( x-\alpha \right)\left( x-\beta \right)$
A quadratic equation of the form $a{{x}^{2}}+bx+c$ is always positive if $a>0$ and its discriminant $D<0$
We have discriminant D of $a{{x}^{2}}+bx+c$ the form $D={{b}^{2}}-4ac$
So, a quadratic expression of the form $a{{x}^{2}}+bx+c$ is always positive if $a>0\text{ and }{{b}^{2}}-4ac<0$
Complete step-by-step solution:
We are given our quadratic expression as:
\[\left( 1+2m \right){{x}^{2}}-2\left( 1+3m \right)x+4\left( 1+m \right)\]
Comparing it from $a{{x}^{2}}+bx+c$ we have
\[\begin{align}
& a=\left( 1+2m \right) \\
& b=-2\left( 1+3m \right) \\
& c=4\left( 1+m \right) \\
\end{align}\]
From above theory we have the quadratic expression \[\left( 1+2m \right){{x}^{2}}-2\left( 1+3m \right)x+4\left( 1+m \right)\] is always positive if $a>0$ is \[\left( 1+2m \right)>0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\] and discriminant \[D={{b}^{2}}-4ac<0\] that is \[{{\left( -2\left( 1+3m \right) \right)}^{2}}-4\times \left( 1+2m \right)4\left( 1+m \right)<0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
So, we have now to solve equation (i) and (ii) to get out integral values of m.
From equation (i) we have
\[1+2m>0\Rightarrow 2m>-1\]
Dividing by 2 both sides we get:
\[m>\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Consider equation (ii) now, we have
\[\begin{align}
& {{\left( -2\left( 1+3m \right) \right)}^{2}}-4\times \left( 1+2m \right)4\left( 1+m \right)<0 \\
& \Rightarrow 4{{\left( 1+3m \right)}^{2}}-16\left( 1+2m \right)\left( 1+m \right)<0 \\
\end{align}\]
Opening square using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ we get:
\[\Rightarrow 4\left( 1+9{{m}^{2}}+6m \right)-16\left( 1+m \right)\left( 1+2m \right)<0\]
Multiplying the brackets and solving further we get:
\[\begin{align}
& 4+36{{m}^{2}}+24m-16\left( 1+2m+m+2{{m}^{2}} \right)<0 \\
& \Rightarrow 4+36{{m}^{2}}+24m-16-48m-32{{m}^{2}}<0 \\
\end{align}\]
Taking terms having ${{m}^{2}},m$ one side we have:
\[\begin{align}
& \left( 36-32 \right){{m}^{2}}+\left( 24-48 \right)m+4-16<0 \\
& \Rightarrow 4{{m}^{2}}+\left( -24m \right)-12<0 \\
\end{align}\]
Taking 4 common we get:
\[4\left( {{m}^{2}}-6m-3 \right)<0\]
Now as \[4\ne 0\text{ and }4>0\Rightarrow {{m}^{2}}-6m-3<0\]
We have roots of quadratic equation $a{{x}^{2}}+bx+c$ as
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
Comparing this for above equation ${{m}^{2}}-6m-3$ we get roots as:
\[\begin{align}
& m=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 1\times(-3)}}{2\times 1} \\
& \Rightarrow m=\dfrac{6\pm \sqrt{36+12}}{2} \\
& \Rightarrow m=\dfrac{6\pm \sqrt{48}}{2} \\
\end{align}\]
Taking LCM of 48 as:
\[\begin{align}
& \begin{matrix}
2 \\
2 \\
2 \\
\end{matrix}\begin{matrix}
\left| \underline {48} \right. \\
\left| \underline {24} \right. \\
\left| \underline {12} \right. \\
\end{matrix} \\
& \begin{matrix}
2 \\
2 \\
\end{matrix}\begin{matrix}
\left|\underline 6 \right. \\
\left|\underline 3 \right. \\
\end{matrix} \\
& 1 \\
\end{align}\]
We have,
\[\begin{align}
& 48=2\times 2\times 2\times 2\times 3 \\
& \Rightarrow \sqrt{48}=2\times 2\sqrt{3}=4\sqrt{3} \\
\end{align}\]
So, we have \[\sqrt{48}=4\sqrt{3}\]
So, we have the value of $m=\dfrac{6\pm 4\sqrt{3}}{2}$
Taking 2 common from numerator and denominator we get:
\[\begin{align}
& m=\dfrac{\left( 3\pm 2\sqrt{3} \right)}{{}} \\
& m=3\pm 2\sqrt{3} \\
\end{align}\]
As, we had ${{m}^{2}}-6m-3<0$ then this can be written as
\[\left( m-\left( 3+2\sqrt{3} \right) \right)\left( m-\left( 3-2\sqrt{3} \right) \right)<0\]
Product of two terms is less than 0 then it implies that;
If \[\left( x-a \right)\left( x-b \right)<0\Rightarrow a\text{ }<\text{ }x\text{ }<\text{ }b\]
So, using this in above we have:
\[\begin{align}
& \left( m-\left( 3+2\sqrt{3} \right) \right)\left( m-\left( 3-2\sqrt{3} \right) \right)\text{ }<\text{ }0 \\
& \Rightarrow 3-2\sqrt{3}\text{ }<\text{ }m\text{ }<\text{ }3+2\sqrt{3} \\
\end{align}\]
As here we had $3-2\sqrt{3}\text{ }<\text{ }m\text{ }<\text{ }3+2\sqrt{3}$
Hence, finally we have m as \[\Rightarrow 3-2\sqrt{3}\text{ }<\text{ }m\text{ }<\text{ }3+2\sqrt{3}\]
Opening $3-2\sqrt{3}$ and using $\sqrt{3}=1.732$ we get:
\[\begin{align}
& 3-2\times 1.732=3-3.464=-0.464 \\
& \text{and }3+2\times 1.732=3+3.464=6.464 \\
\end{align}\]
Then, value of m lies as:
\[-0.464\text{ }<\text{ }m\text{ }<\text{ }6.464\]
All integral values of m lying in their range is
\[m=0,1,2,3,4,5,6\]
So, we have 7 integral values of m possible such that,
\[\left( 1+2m \right){{x}^{2}}-2\left( 1+3m \right)x+4\left( 1+m \right)\text{ is positive}\]
Also, from equation (iii) we had \[m\text{ }>\text{ }\dfrac{-1}{2}\Rightarrow m\text{ }>\text{ }-0.5\]
So, anyway above values are valid.
Therefore, there are 7 integral values of m possible. Option B is correct.
Note: The student can make mistake at the point where \[\left( m-\left( 3+2\sqrt{3} \right) \right)\left( m-\left( 3-2\sqrt{3} \right) \right)<0\] is considered. This step does not imply that both \[\left( m-\left( 3+2\sqrt{3} \right) \right)\text{ and }\left( m-\left( 3-2\sqrt{3} \right) \right)\] are negative. Because if product of two numbers is negative then there is a possibility of one of them to be positive. Therefore, we will not use both \[\left( m-\left( 3+2\sqrt{3} \right) \right)\left( m-\left( 3-2\sqrt{3} \right) \right)<0\] to be negative.
There is one more key point that, if the roots of quadratic equation are $\alpha \text{ and }\beta $ then the quadratic equation $a{{x}^{2}}+bx+c$ can be written as $\left( x-\alpha \right)\left( x-\beta \right)$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

