
The network shown in the figure is part of a complete circuit. If at a certain instant, the current I is 4 A and it is increasing at a rate of \[{{10}^{4}}\] \[A{{s}^{-1}}\] then \[({{V}_{p}}-{{V}_{q}})\] is :
A. 56 V
B. 76 V
C. -56 V
D. 66 V
Answer
556.8k+ views
Hint: In this question we have been asked to calculate the voltage difference between points P and Q. from the diagram we can say that the given network is a inductor-resistor circuit. Now, from Kirchhoff’s loop rule we know that the sum of all electric potential differences around a loop is zero. Therefore, we shall write the equation for voltage drop and calculate the difference between points P and Q.
Complete step-by-step answer:
Let us assume that the given circuit is a complete loop. Therefore, now we can apply Kirchhoff’s loop rule.
Writing the voltage drop equation for given circuit
We get,
\[{{V}_{p}}-iR-V-L\dfrac{di}{dt}-{{V}_{q}}=0\]
Now, it is given that current I is 4 A. Also, from the diagram we know, inductance L is 5 mH i.e. \[5\times {{10}^{3}}\]H, voltage V is 10 V and resistance R is 10 Ohms. We have been given that \[\dfrac{di}{dt}={{10}^{4}}A{{s}^{-1}}\]
Therefore, after substituting the all the given values
We get,
\[{{V}_{p}}-4\times 4-10-5\times {{10}^{-3}}\times {{10}^{4}}-{{V}_{q}}=0\]
On solving
We get,
\[{{V}_{p}}-{{V}_{q}}=76\]
So, the correct answer is “Option B”.
Note: The resistor-inductor circuit consists of a resistor and inductor driven by voltage or current source. The Kirchhoff’s loop rule also known as Kirchhoff’s voltage law states that the sum of voltage difference across a complete loop is always zero. It means that the voltage drop across a loop is zero. This law is similar to conservation of energy in terms of electric potential.
Complete step-by-step answer:
Let us assume that the given circuit is a complete loop. Therefore, now we can apply Kirchhoff’s loop rule.
Writing the voltage drop equation for given circuit
We get,
\[{{V}_{p}}-iR-V-L\dfrac{di}{dt}-{{V}_{q}}=0\]
Now, it is given that current I is 4 A. Also, from the diagram we know, inductance L is 5 mH i.e. \[5\times {{10}^{3}}\]H, voltage V is 10 V and resistance R is 10 Ohms. We have been given that \[\dfrac{di}{dt}={{10}^{4}}A{{s}^{-1}}\]
Therefore, after substituting the all the given values
We get,
\[{{V}_{p}}-4\times 4-10-5\times {{10}^{-3}}\times {{10}^{4}}-{{V}_{q}}=0\]
On solving
We get,
\[{{V}_{p}}-{{V}_{q}}=76\]
So, the correct answer is “Option B”.
Note: The resistor-inductor circuit consists of a resistor and inductor driven by voltage or current source. The Kirchhoff’s loop rule also known as Kirchhoff’s voltage law states that the sum of voltage difference across a complete loop is always zero. It means that the voltage drop across a loop is zero. This law is similar to conservation of energy in terms of electric potential.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

