
The magnetic susceptibility of a magnetic material is $3\times {{10}^{-4}}$. Its relative permeability will be
$\begin{align}
& \left( A \right)31\times {{10}^{-4}} \\
& \left( B \right)1.003 \\
& \left( C \right)1.0003 \\
& \left( D \right)29\times {{10}^{-4}} \\
\end{align}$
Answer
564.3k+ views
Hint: Use the equation connecting the relative permeability to the magnetic susceptibility of a material. That, one plus the value of magnetic susceptibility gives the relative permeability of a material. Magnetic susceptibility is described as a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
Formula used:
${{\mu }_{r}}=1+\chi $
where, $\chi $ is the magnetic susceptibility
${{\mu }_{r}}$ is the relative permeability.
Complete step by step solution:
Given that magnetic susceptibility is,
\[\]$\begin{align}
& \chi =3\times {{10}^{-4}} \\
& {{\mu }_{r}}=1+\chi \\
& \Rightarrow {{\mu }_{r}}=1+3\times {{10}^{-4}} \\
& \Rightarrow {{\mu }_{r}}=1+0.0003 \\
& \therefore {{\mu }_{r}}=1.0003 \\
\end{align}$
So, the correct answer is “Option C”.
Additional Information: In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when the magnetic field is removed, magnetization disappears. For most of the substances the magnitude of magnetization is proportional to its magnetic field.
That is,
$M={{\chi }_{m}}H$ ………(2)
The constant of proportionality ${{\chi }_{m}}$ is the magnetic susceptibility.
Magnetic susceptibility is described as a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
The material which obeys the equation $M={{\chi }_{m}}H$is called linear media.
Let's consider the equation $H=\dfrac{1}{{{\mu }_{0}}}B-M$.
By rearranging the equation we get,
$\begin{align}
& H+M=\dfrac{1}{{{\mu }_{0}}}B \\
& \Rightarrow B={{\mu }_{0}}\left( M+H \right) \\
\end{align}$
Substituting equation (2) in the above equation,
$\begin{align}
& B={{\mu }_{0}}\left( {{\chi }_{m}}H+H \right) \\
& \Rightarrow B={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)H \\
\end{align}$
Thus here B is also proportional to H. Hence,
$B=\mu H$
where,
$\mu ={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)$
$\mu $ is called the permeability of the material and ${{\mu }_{0}}$ is called the permeability of free space.
${{\mu }_{r}}=1+{{\chi }_{m}}$
where, ${{\mu }_{r}}$ is the relative permeability.
Note: In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when the magnetic field is removed, magnetization disappears. For most of the substances the magnitude of magnetization is proportional to its magnetic field. Magnetic susceptibility is a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
Formula used:
${{\mu }_{r}}=1+\chi $
where, $\chi $ is the magnetic susceptibility
${{\mu }_{r}}$ is the relative permeability.
Complete step by step solution:
Given that magnetic susceptibility is,
\[\]$\begin{align}
& \chi =3\times {{10}^{-4}} \\
& {{\mu }_{r}}=1+\chi \\
& \Rightarrow {{\mu }_{r}}=1+3\times {{10}^{-4}} \\
& \Rightarrow {{\mu }_{r}}=1+0.0003 \\
& \therefore {{\mu }_{r}}=1.0003 \\
\end{align}$
So, the correct answer is “Option C”.
Additional Information: In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when the magnetic field is removed, magnetization disappears. For most of the substances the magnitude of magnetization is proportional to its magnetic field.
That is,
$M={{\chi }_{m}}H$ ………(2)
The constant of proportionality ${{\chi }_{m}}$ is the magnetic susceptibility.
Magnetic susceptibility is described as a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
The material which obeys the equation $M={{\chi }_{m}}H$is called linear media.
Let's consider the equation $H=\dfrac{1}{{{\mu }_{0}}}B-M$.
By rearranging the equation we get,
$\begin{align}
& H+M=\dfrac{1}{{{\mu }_{0}}}B \\
& \Rightarrow B={{\mu }_{0}}\left( M+H \right) \\
\end{align}$
Substituting equation (2) in the above equation,
$\begin{align}
& B={{\mu }_{0}}\left( {{\chi }_{m}}H+H \right) \\
& \Rightarrow B={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)H \\
\end{align}$
Thus here B is also proportional to H. Hence,
$B=\mu H$
where,
$\mu ={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)$
$\mu $ is called the permeability of the material and ${{\mu }_{0}}$ is called the permeability of free space.
${{\mu }_{r}}=1+{{\chi }_{m}}$
where, ${{\mu }_{r}}$ is the relative permeability.
Note: In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when the magnetic field is removed, magnetization disappears. For most of the substances the magnitude of magnetization is proportional to its magnetic field. Magnetic susceptibility is a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Sketch the electric field lines in case of an electric class 12 physics CBSE

Explain the formation of energy bands in solids On class 12 physics CBSE

Mention any two factors on which the capacitance of class 12 physics CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

a Draw Labelled diagram of Standard Hydrogen Electrode class 12 chemistry CBSE

