
The magnetic field of a plane electromagnetic wave is given by:
$\overrightarrow B = {B_0}\hat i\left[ {\cos \left( {kz - wt} \right)} \right] + {B_1}\hat j\left[ {\cos \left( {kz + wt} \right)} \right]$ where ${B_0} = 3 \times {10^{ - 5}}T$;${B_1} = 2 \times {10^{ - 6}}T$. The rms value of the force experienced by a stationary charge$Q = {10^{ - 4}}C$ at $z = 0$ is closest to:
A. $0.9\,N$
B. $0.1\,N$
C. $3 \times {10^{ - 2}}\,N$
D. $0.6\,N$
Answer
567.9k+ views
Hint-The relation between peak value of electric field and magnetic field in an electromagnetic wave is given as
$E = Bc$
Where, $E$ is the peak value of the electric field and $B$ is the peak value of the magnetic field and \[c\] is the speed of light.
The net peak value of magnetic field is given as
\[B = \sqrt {B_0^2 + B_1^2} \]
Force due to electric field on a charge $q$is given as
$F = qE$
Where, $q$ is the charge and $E$ is the electric field.
The relation connecting peak value and RMS value of force is
${F_{rms}} = \dfrac{F}{{\sqrt 2 }}$
Step by step solution:
Electromagnetic waves are created as a result of vibrations of electric field and magnetic field. So, we can say that they are composed of oscillating electric and magnetic fields
The relation between peak value of electric field and magnetic field in an electromagnetic wave is given as
$E = Bc$ ….. (1)
Where, $E$ is the peak value of the electric field and $B$ is the peak value of the magnetic field and \[c\] is the speed of light.
Given,
$Q = {10^{ - 4}}C$
The value of magnetic field of plane electromagnetic wave as
$\overrightarrow B = {B_0}\hat i\left[ {\cos \left( {kz - wt} \right)} \right] + {B_1}\hat j\left[ {\cos \left( {kz + wt} \right)} \right]$
From this we can see that the peak value of magnetic field in the x direction is ${B_0}$ and the peak value of magnetic field in the y direction is ${B_1}$.
So, the net peak value of magnetic field is given as
\[B = \sqrt {B_0^2 + B_1^2} \]
Substitute the given values,${B_0} = 3 \times {10^{ - 5}}T$ and ${B_1} = 2 \times {10^{ - 6}}T$.
\[
B = \sqrt {{{\left( {3 \times {{10}^{ - 5}}} \right)}^2} + {{\left( {2 \times {{10}^{ - 6}}} \right)}^2}} \\
= 3.006 \times {10^{ - 5}}\,T \\
\]
Now let us substitute this value in equation (1)
$
E = Bc \\
= 3.006 \times {10^{ - 5}} \times 3 \times {10^8} \\
= 9.018 \times {10^3}V{m^{ - 1}} \\
$
This is the peak value of the electric field.
Force due to electric field on a charge $q$is given as
$F = qE$
Where, $q$ is the charge and $E$ is the electric field.
Substitute the given values. Then, we get
$
F = {10^{ - 4}} \times 9.018 \times {10^3} \\
= 0.9018\,N \\
$
This is the peak value of force. We need to find the RMS value of force.
The relation connecting peak value and RMS value of force is
${F_{rms}} = \dfrac{F}{{\sqrt 2 }}$
On substituting the value of force in this equation, we get
$
{F_{rms}} = \dfrac{{0.9018\,}}{{\sqrt 2 }} \\
= 0.637\,N \\
$
So, the correct answer is option D.
Note: Here, it is given that the charge is stationary. Thus, only force due to the electric field is present. Effect of force due to the magnetic field will be felt only by moving charges. So, if the charge is moving then we should also consider the force due to the magnetic field.
$E = Bc$
Where, $E$ is the peak value of the electric field and $B$ is the peak value of the magnetic field and \[c\] is the speed of light.
The net peak value of magnetic field is given as
\[B = \sqrt {B_0^2 + B_1^2} \]
Force due to electric field on a charge $q$is given as
$F = qE$
Where, $q$ is the charge and $E$ is the electric field.
The relation connecting peak value and RMS value of force is
${F_{rms}} = \dfrac{F}{{\sqrt 2 }}$
Step by step solution:
Electromagnetic waves are created as a result of vibrations of electric field and magnetic field. So, we can say that they are composed of oscillating electric and magnetic fields
The relation between peak value of electric field and magnetic field in an electromagnetic wave is given as
$E = Bc$ ….. (1)
Where, $E$ is the peak value of the electric field and $B$ is the peak value of the magnetic field and \[c\] is the speed of light.
Given,
$Q = {10^{ - 4}}C$
The value of magnetic field of plane electromagnetic wave as
$\overrightarrow B = {B_0}\hat i\left[ {\cos \left( {kz - wt} \right)} \right] + {B_1}\hat j\left[ {\cos \left( {kz + wt} \right)} \right]$
From this we can see that the peak value of magnetic field in the x direction is ${B_0}$ and the peak value of magnetic field in the y direction is ${B_1}$.
So, the net peak value of magnetic field is given as
\[B = \sqrt {B_0^2 + B_1^2} \]
Substitute the given values,${B_0} = 3 \times {10^{ - 5}}T$ and ${B_1} = 2 \times {10^{ - 6}}T$.
\[
B = \sqrt {{{\left( {3 \times {{10}^{ - 5}}} \right)}^2} + {{\left( {2 \times {{10}^{ - 6}}} \right)}^2}} \\
= 3.006 \times {10^{ - 5}}\,T \\
\]
Now let us substitute this value in equation (1)
$
E = Bc \\
= 3.006 \times {10^{ - 5}} \times 3 \times {10^8} \\
= 9.018 \times {10^3}V{m^{ - 1}} \\
$
This is the peak value of the electric field.
Force due to electric field on a charge $q$is given as
$F = qE$
Where, $q$ is the charge and $E$ is the electric field.
Substitute the given values. Then, we get
$
F = {10^{ - 4}} \times 9.018 \times {10^3} \\
= 0.9018\,N \\
$
This is the peak value of force. We need to find the RMS value of force.
The relation connecting peak value and RMS value of force is
${F_{rms}} = \dfrac{F}{{\sqrt 2 }}$
On substituting the value of force in this equation, we get
$
{F_{rms}} = \dfrac{{0.9018\,}}{{\sqrt 2 }} \\
= 0.637\,N \\
$
So, the correct answer is option D.
Note: Here, it is given that the charge is stationary. Thus, only force due to the electric field is present. Effect of force due to the magnetic field will be felt only by moving charges. So, if the charge is moving then we should also consider the force due to the magnetic field.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

