
The length of a tangent, subtangent, normal and subnormal for the curve $y={{x}^{2}}+x-1$ at (1,1) are A, B, C, and D respectively, then their increasing order is.
(a) B, D, A, C
(b) B, A, C, D
(c) A, B, C, D
(d) B, A, D, C
Answer
566.4k+ views
Hint: For solving this question first we will see the formulas for the length of a tangent, subtangent, normal, subnormal. After that, we will differentiate it with respect to $x$ and calculate the value of $\dfrac{dy}{dx}$. Then, we will directly find the length of the subtangent from its formula.
Complete step-by-step solution
Given:
We have to find the increasing order of length of a tangent, subtangent, normal, and subnormal for the curve $y={{x}^{2}}+x-1$ at the point (1,1). And it is given that A is the length of a tangent, B is the length of a subtangent, C is the length of normal and D is the length of subnormal.
Now, before we proceed we should know the following four formulas:
1. Length of tangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
2. Length of subtangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
3. Length of normal for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\sqrt{1+{{\left( \dfrac{dy}{dx} \right)}^{2}}} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
4. Length of subnormal for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
Now, first, we will find the value of $\dfrac{dy}{dx}$ at point (1,1) for the function $y={{x}^{2}}+x-1$ . Then,
$\begin{align}
& y={{x}^{2}}+x-1 \\
& \Rightarrow \dfrac{dy}{dx}=2x+1 \\
& \Rightarrow {{\left[ \dfrac{dy}{dx} \right]}_{\left( 1,1 \right)}}=2+1 \\
& \Rightarrow {{\left[ \dfrac{dy}{dx} \right]}_{\left( 1,1 \right)}}=3 \\
\end{align}$
Now, using the formulas for the length of tangent, subtangent, normal, subnormal to find the value of A, B, C, D. Then,
\[\begin{align}
& A={{\left| y\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}} \right|}_{\left( 1,1 \right)}}={{\left| y\sqrt{1+\dfrac{1}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow A=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}} \\
& \Rightarrow A=\dfrac{\sqrt{10}}{3} \\
& B={{\left| y\dfrac{dx}{dy} \right|}_{\left( 1,1 \right)}}={{\left| y\times \dfrac{1}{\dfrac{dy}{dx}} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow B=\dfrac{1}{3} \\
& C={{\left| y\sqrt{1+{{\left( \dfrac{dy}{dx} \right)}^{2}}} \right|}_{\left( 1,1 \right)}}=\left| 1\times \sqrt{1+9} \right| \\
& \Rightarrow C=\sqrt{10} \\
& D={{\left| y\dfrac{dy}{dx} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow D=3 \\
\end{align}\]
Now, from the above result, we conclude that $B< A< D< C$ .
Hence, (d) is the correct option.
Note: Here, the student should apply the formula for the length of a tangent, subtangent, normal, and subnormal directly and proceed in a stepwise manner. But we should be careful while writing their formulas as they might seem to be similar. Moreover, we should substitute correct values while calculating to get the correct answer.
Complete step-by-step solution
Given:
We have to find the increasing order of length of a tangent, subtangent, normal, and subnormal for the curve $y={{x}^{2}}+x-1$ at the point (1,1). And it is given that A is the length of a tangent, B is the length of a subtangent, C is the length of normal and D is the length of subnormal.
Now, before we proceed we should know the following four formulas:
1. Length of tangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
2. Length of subtangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
3. Length of normal for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\sqrt{1+{{\left( \dfrac{dy}{dx} \right)}^{2}}} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
4. Length of subnormal for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
Now, first, we will find the value of $\dfrac{dy}{dx}$ at point (1,1) for the function $y={{x}^{2}}+x-1$ . Then,
$\begin{align}
& y={{x}^{2}}+x-1 \\
& \Rightarrow \dfrac{dy}{dx}=2x+1 \\
& \Rightarrow {{\left[ \dfrac{dy}{dx} \right]}_{\left( 1,1 \right)}}=2+1 \\
& \Rightarrow {{\left[ \dfrac{dy}{dx} \right]}_{\left( 1,1 \right)}}=3 \\
\end{align}$
Now, using the formulas for the length of tangent, subtangent, normal, subnormal to find the value of A, B, C, D. Then,
\[\begin{align}
& A={{\left| y\sqrt{1+{{\left( \dfrac{dx}{dy} \right)}^{2}}} \right|}_{\left( 1,1 \right)}}={{\left| y\sqrt{1+\dfrac{1}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow A=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}} \\
& \Rightarrow A=\dfrac{\sqrt{10}}{3} \\
& B={{\left| y\dfrac{dx}{dy} \right|}_{\left( 1,1 \right)}}={{\left| y\times \dfrac{1}{\dfrac{dy}{dx}} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow B=\dfrac{1}{3} \\
& C={{\left| y\sqrt{1+{{\left( \dfrac{dy}{dx} \right)}^{2}}} \right|}_{\left( 1,1 \right)}}=\left| 1\times \sqrt{1+9} \right| \\
& \Rightarrow C=\sqrt{10} \\
& D={{\left| y\dfrac{dy}{dx} \right|}_{\left( 1,1 \right)}} \\
& \Rightarrow D=3 \\
\end{align}\]
Now, from the above result, we conclude that $B< A< D< C$ .
Hence, (d) is the correct option.
Note: Here, the student should apply the formula for the length of a tangent, subtangent, normal, and subnormal directly and proceed in a stepwise manner. But we should be careful while writing their formulas as they might seem to be similar. Moreover, we should substitute correct values while calculating to get the correct answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

