
The integral $\int{\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}dx}$ is equal to: (where C is a constant of integration)
(a) $\dfrac{{{x}^{4}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$
(b) $\dfrac{{{x}^{12}}}{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$
(c) $\dfrac{{{x}^{4}}}{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$
(d) $\dfrac{{{x}^{12}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$
Answer
582.3k+ views
Hint: First, take the highest power of x, ${{x}^{16}}$ from numerator and denominator. Then observe the remaining integral, try that numerator becomes the differentiation of the denominator terms, with some manipulations. Assume the denominator term whose differentiation is in the numerator as another variable and integrate with respect to the new variable.
Complete step-by-step answer:
We are given an integrand which seems complicated to integrate at first , so we will first try to simplify it .
To simplify it first take common the highest power of $x$ , ${{x}^{^{16}}}$ from numerator and denominator,
So, first consider the given integral,
$\int{\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}dx}$
Now, take common ${{x}^{^{16}}}$ from numerator and denominator, and get,
$\begin{align}
& \int{\dfrac{\left( 3{{x}^{13}}+2{{x}^{11}} \right)}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}dx} \\
& =\int{\dfrac{{{x}^{16}}\left( \dfrac{3}{{{x}^{3}}}+\dfrac{2}{{{x}^{5}}} \right)}{{{x}^{16}}{{\left( 2+\dfrac{3}{{{x}^{2}}}+\dfrac{4}{{{x}^{4}}} \right)}^{4}}}dx} \\
& =\int{\dfrac{\left( \dfrac{3}{{{x}^{3}}}+\dfrac{2}{{{x}^{5}}} \right)}{{{\left( 2+\dfrac{3}{{{x}^{2}}}+\dfrac{4}{{{x}^{4}}} \right)}^{4}}}dx}
\end{align}$
Now, we have little simplified integrand,
Now, observe that the term under the power 4 has the differentiation similar to the terms in numerator,
So, Let,
$2+\dfrac{3}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}=t$
Now, differentiating on both the sides, we get,
$\begin{align}
& \left( 0-\dfrac{6}{{{x}^{3}}}-\dfrac{4}{{{x}^{5}}} \right)dx=dt \\
& \Rightarrow \left( \dfrac{6}{{{x}^{3}}}-\dfrac{4}{{{x}^{5}}} \right)dx=dt \\
& \Rightarrow -2\left( \dfrac{3}{{{x}^{3}}}+\dfrac{2}{{{x}^{5}}} \right)dx=dt \\
& \Rightarrow \left( \dfrac{3}{{{x}^{3}}}+\dfrac{2}{{{x}^{5}}} \right)dx=-\dfrac{dt}{2} \\
\end{align}$
Now, converting the integral in terms of $t$ , we get,
$\begin{align}
& =\int{\dfrac{-\dfrac{1}{2}}{{{t}^{4}}}dt} \\
& =-\dfrac{1}{2}\int{{{t}^{-4}}dt} \\
& =-\dfrac{1}{2}\dfrac{{{t}^{-3}}}{-3}+C \\
& =\dfrac{1}{6}{{t}^{-3}}+C \\
\end{align}$
Now, outing the value of t, we get,
$\dfrac{{{x}^{12}}}{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$
$\begin{align}
& =\dfrac{1}{6{{\left( 2+\dfrac{3}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}} \right)}^{3}}}+C \\
& =\dfrac{1}{\dfrac{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}{{{x}^{12}}}}+C \\
& =\dfrac{{{x}^{12}}}{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C \\
\end{align}$
Hence, the value of the integral $\int{\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}dx}$ = $\dfrac{{{x}^{12}}}{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$
So, the correct answer is “Option b”.
Note: There is an alternate method of this question through observing the options of the questions.
See the options (a) and (c) they seem similar, difference is just because of constant terms. Same is the case with options (b) and (d). First, let the integral value is equal to $\dfrac{A{{x}^{4}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$, so if this is the integral value then its differentiation will be equal to $\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}$ . But, when you’ll differentiate it, it is not going to seem like this , $\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}$,hence, absurd condition . So, now let that the integral value be equal to $\dfrac{B{{x}^{12}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$. Now, when you’ll differentiate it is going to seem like the $\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}$. Equate with this and hence find the value of $B$ .
Complete step-by-step answer:
We are given an integrand which seems complicated to integrate at first , so we will first try to simplify it .
To simplify it first take common the highest power of $x$ , ${{x}^{^{16}}}$ from numerator and denominator,
So, first consider the given integral,
$\int{\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}dx}$
Now, take common ${{x}^{^{16}}}$ from numerator and denominator, and get,
$\begin{align}
& \int{\dfrac{\left( 3{{x}^{13}}+2{{x}^{11}} \right)}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}dx} \\
& =\int{\dfrac{{{x}^{16}}\left( \dfrac{3}{{{x}^{3}}}+\dfrac{2}{{{x}^{5}}} \right)}{{{x}^{16}}{{\left( 2+\dfrac{3}{{{x}^{2}}}+\dfrac{4}{{{x}^{4}}} \right)}^{4}}}dx} \\
& =\int{\dfrac{\left( \dfrac{3}{{{x}^{3}}}+\dfrac{2}{{{x}^{5}}} \right)}{{{\left( 2+\dfrac{3}{{{x}^{2}}}+\dfrac{4}{{{x}^{4}}} \right)}^{4}}}dx}
\end{align}$
Now, we have little simplified integrand,
Now, observe that the term under the power 4 has the differentiation similar to the terms in numerator,
So, Let,
$2+\dfrac{3}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}=t$
Now, differentiating on both the sides, we get,
$\begin{align}
& \left( 0-\dfrac{6}{{{x}^{3}}}-\dfrac{4}{{{x}^{5}}} \right)dx=dt \\
& \Rightarrow \left( \dfrac{6}{{{x}^{3}}}-\dfrac{4}{{{x}^{5}}} \right)dx=dt \\
& \Rightarrow -2\left( \dfrac{3}{{{x}^{3}}}+\dfrac{2}{{{x}^{5}}} \right)dx=dt \\
& \Rightarrow \left( \dfrac{3}{{{x}^{3}}}+\dfrac{2}{{{x}^{5}}} \right)dx=-\dfrac{dt}{2} \\
\end{align}$
Now, converting the integral in terms of $t$ , we get,
$\begin{align}
& =\int{\dfrac{-\dfrac{1}{2}}{{{t}^{4}}}dt} \\
& =-\dfrac{1}{2}\int{{{t}^{-4}}dt} \\
& =-\dfrac{1}{2}\dfrac{{{t}^{-3}}}{-3}+C \\
& =\dfrac{1}{6}{{t}^{-3}}+C \\
\end{align}$
Now, outing the value of t, we get,
$\dfrac{{{x}^{12}}}{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$
$\begin{align}
& =\dfrac{1}{6{{\left( 2+\dfrac{3}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}} \right)}^{3}}}+C \\
& =\dfrac{1}{\dfrac{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}{{{x}^{12}}}}+C \\
& =\dfrac{{{x}^{12}}}{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C \\
\end{align}$
Hence, the value of the integral $\int{\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}dx}$ = $\dfrac{{{x}^{12}}}{6{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$
So, the correct answer is “Option b”.
Note: There is an alternate method of this question through observing the options of the questions.
See the options (a) and (c) they seem similar, difference is just because of constant terms. Same is the case with options (b) and (d). First, let the integral value is equal to $\dfrac{A{{x}^{4}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$, so if this is the integral value then its differentiation will be equal to $\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}$ . But, when you’ll differentiate it, it is not going to seem like this , $\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}$,hence, absurd condition . So, now let that the integral value be equal to $\dfrac{B{{x}^{12}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{3}}}+C$. Now, when you’ll differentiate it is going to seem like the $\dfrac{3{{x}^{13}}+2{{x}^{11}}}{{{\left( 2{{x}^{4}}+3{{x}^{2}}+1 \right)}^{4}}}$. Equate with this and hence find the value of $B$ .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

