
The half-life of strontium-90 is 28 years. How long will it take a 44 mg sample to decay to a mass of 11 mg?
Answer
523.2k+ views
Hint: The half-life of any radioactive substance is the time period required for the substance to decay, half of its initial amount. The given substance i.e. strontium-90 is the radioactive substance whose half-life is given i.e. 28 years.
Complete answer:
Let us see into radioactivity and solve the given problem;
The half-life for the radioactive sample is the interval of time required for one half of the atomic nuclei to decay. This is given by the simple equation as;
$\operatorname{Re}maining-amount=\dfrac{Initial-amount}{{{2}^{n}}}$ where, n is the number of half-lives that passed.
Now, you have given;
Half-life of strontium-90 = 28 years
Initial mass of sample = 44 mg
Remaining mass of sample = 11 mg
Putting into above stated formula, we get,
$\begin{align}
& \operatorname{Re}maining-amount=\dfrac{Initial-amount}{{{2}^{n}}} \\
& 11=\dfrac{44}{{{2}^{n}}} \\
& \therefore {{2}^{n}}=\dfrac{44}{11}=4 \\
& \Rightarrow n=2 \\
\end{align}$
Thus, two half-lives must pass;
Time required = $2\times 28=56years$ .
Note:
Do note that to demonstrate the above stated formula, general idea was used as;
${{A}_{0}}.\dfrac{1}{2}\to $ when one half-life passes
$\dfrac{{{A}_{0}}}{2}.\dfrac{1}{2}=\dfrac{{{A}_{0}}}{4}\to $ when two half-lives pass.
$\dfrac{{{A}_{0}}}{4}.\dfrac{{{A}_{0}}}{2}=\dfrac{{{A}_{0}}}{8}\to $ when three half-lives pass, and so on…
Hence, we reached the formula;
$\operatorname{Re}maining-amount=\dfrac{Initial-amount}{{{2}^{n}}}$ .
Complete answer:
Let us see into radioactivity and solve the given problem;
The half-life for the radioactive sample is the interval of time required for one half of the atomic nuclei to decay. This is given by the simple equation as;
$\operatorname{Re}maining-amount=\dfrac{Initial-amount}{{{2}^{n}}}$ where, n is the number of half-lives that passed.
Now, you have given;
Half-life of strontium-90 = 28 years
Initial mass of sample = 44 mg
Remaining mass of sample = 11 mg
Putting into above stated formula, we get,
$\begin{align}
& \operatorname{Re}maining-amount=\dfrac{Initial-amount}{{{2}^{n}}} \\
& 11=\dfrac{44}{{{2}^{n}}} \\
& \therefore {{2}^{n}}=\dfrac{44}{11}=4 \\
& \Rightarrow n=2 \\
\end{align}$
Thus, two half-lives must pass;
Time required = $2\times 28=56years$ .
Note:
Do note that to demonstrate the above stated formula, general idea was used as;
${{A}_{0}}.\dfrac{1}{2}\to $ when one half-life passes
$\dfrac{{{A}_{0}}}{2}.\dfrac{1}{2}=\dfrac{{{A}_{0}}}{4}\to $ when two half-lives pass.
$\dfrac{{{A}_{0}}}{4}.\dfrac{{{A}_{0}}}{2}=\dfrac{{{A}_{0}}}{8}\to $ when three half-lives pass, and so on…
Hence, we reached the formula;
$\operatorname{Re}maining-amount=\dfrac{Initial-amount}{{{2}^{n}}}$ .
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
State the principle of an ac generator and explain class 12 physics CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Derive an expression for electric potential at point class 12 physics CBSE

What is virtual and erect image ?

Explain the formation of energy bands in solids On class 12 physics CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

