
The gas phase decomposition of acetic acid at 1189 K proceeds by way of two parallel reactions.
$C{H_3}COOH \to C{H_4} + C{O_2}\,{k_1} = 3.8{\sec ^{ - 1}}$
$C{H_3}COOH \to C{H_2} = C = O + {H_2}O\,{k_2} = 0.2{\sec ^{ - 1}}$
What is the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature?
A. \[5\% \]
B. \[95\% \]
C. \[15\% \]
D. \[10\% \]
Answer
561k+ views
Hint: The two parallel reactions are given. The ratio of concentration of this reaction is following:
$\dfrac{{[B]}}{{[C]}} = \dfrac{{k1}}{{k2}}\,or\,\dfrac{{[C]}}{{[B]}} = \dfrac{{k2}}{{k1}}$
Complete step by step solution:
We have
${k_1} = 3.8{\sec ^{ - 1}}$
${k_2} = 0.2{\sec ^{ - 1}}$
This equation is used for rate of change of Acetic acid
\[{[C{H_2}CO]_\infty } = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times {[C{H_3}COOH]_0}\]
$\Rightarrow$ $\dfrac{{{{[C{H_2}CO]}_\infty }}}{{{{[C{H_3}COOH]}_0}}} = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times 100\% $
$\Rightarrow$ $\dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100 = \dfrac{{{k_2}}}{{{k_1}}}}} \times 100 = \dfrac{{0.2}}{{3.8}} \times 100 = 0.05\% \dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100}}$
So, the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature is \[5\% \].
Hence, the correct answer is option A.
Note: The alternative method used can be:
Rate of change of Acetic acid
$ - \dfrac{{d[A]}}{{dt}} = {k_1}[A] + {k_2}[A]$
x = concentration of products formed
So,
\[x = {[A]^0} - [A]\]
This equation can be used for rate of change of A
$\dfrac{{dx}}{{dt}} = k1({[A]^0} - x) + k2({[A]^0} - x)$
$\Rightarrow$ $\dfrac{{dx}}{{dt}} = (9k1 + k2)({[A]^0} - X)$
$\Rightarrow$ $(k1 + k2)t = In\left( {\dfrac{{{{[A]}^0}}}{{{{[A]}^0} - x}}} \right)$
$\Rightarrow$ $x = {[A]^0}(1 - {e^{ - (k1 + k2)t}})$
$\Rightarrow$ $x2 = {[A]^0}(1 - {e^{ - (o + k2)t}})$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{{{[A]}^0}k2t}}{{{{[A]}^0}(k1 + k2)t}}$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{k2}}{{k1 + k2}}$
By solving the equation, we get the maximum percentage yield of ketene.
$\dfrac{{[B]}}{{[C]}} = \dfrac{{k1}}{{k2}}\,or\,\dfrac{{[C]}}{{[B]}} = \dfrac{{k2}}{{k1}}$
Complete step by step solution:
We have
${k_1} = 3.8{\sec ^{ - 1}}$
${k_2} = 0.2{\sec ^{ - 1}}$
This equation is used for rate of change of Acetic acid
\[{[C{H_2}CO]_\infty } = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times {[C{H_3}COOH]_0}\]
$\Rightarrow$ $\dfrac{{{{[C{H_2}CO]}_\infty }}}{{{{[C{H_3}COOH]}_0}}} = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times 100\% $
$\Rightarrow$ $\dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100 = \dfrac{{{k_2}}}{{{k_1}}}}} \times 100 = \dfrac{{0.2}}{{3.8}} \times 100 = 0.05\% \dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100}}$
So, the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature is \[5\% \].
Hence, the correct answer is option A.
Note: The alternative method used can be:
Rate of change of Acetic acid
$ - \dfrac{{d[A]}}{{dt}} = {k_1}[A] + {k_2}[A]$
x = concentration of products formed
So,
\[x = {[A]^0} - [A]\]
This equation can be used for rate of change of A
$\dfrac{{dx}}{{dt}} = k1({[A]^0} - x) + k2({[A]^0} - x)$
$\Rightarrow$ $\dfrac{{dx}}{{dt}} = (9k1 + k2)({[A]^0} - X)$
$\Rightarrow$ $(k1 + k2)t = In\left( {\dfrac{{{{[A]}^0}}}{{{{[A]}^0} - x}}} \right)$
$\Rightarrow$ $x = {[A]^0}(1 - {e^{ - (k1 + k2)t}})$
$\Rightarrow$ $x2 = {[A]^0}(1 - {e^{ - (o + k2)t}})$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{{{[A]}^0}k2t}}{{{{[A]}^0}(k1 + k2)t}}$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{k2}}{{k1 + k2}}$
By solving the equation, we get the maximum percentage yield of ketene.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

