
The gas phase decomposition of acetic acid at 1189 K proceeds by way of two parallel reactions.
$C{H_3}COOH \to C{H_4} + C{O_2}\,{k_1} = 3.8{\sec ^{ - 1}}$
$C{H_3}COOH \to C{H_2} = C = O + {H_2}O\,{k_2} = 0.2{\sec ^{ - 1}}$
What is the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature?
A. \[5\% \]
B. \[95\% \]
C. \[15\% \]
D. \[10\% \]
Answer
569.4k+ views
Hint: The two parallel reactions are given. The ratio of concentration of this reaction is following:
$\dfrac{{[B]}}{{[C]}} = \dfrac{{k1}}{{k2}}\,or\,\dfrac{{[C]}}{{[B]}} = \dfrac{{k2}}{{k1}}$
Complete step by step solution:
We have
${k_1} = 3.8{\sec ^{ - 1}}$
${k_2} = 0.2{\sec ^{ - 1}}$
This equation is used for rate of change of Acetic acid
\[{[C{H_2}CO]_\infty } = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times {[C{H_3}COOH]_0}\]
$\Rightarrow$ $\dfrac{{{{[C{H_2}CO]}_\infty }}}{{{{[C{H_3}COOH]}_0}}} = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times 100\% $
$\Rightarrow$ $\dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100 = \dfrac{{{k_2}}}{{{k_1}}}}} \times 100 = \dfrac{{0.2}}{{3.8}} \times 100 = 0.05\% \dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100}}$
So, the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature is \[5\% \].
Hence, the correct answer is option A.
Note: The alternative method used can be:
Rate of change of Acetic acid
$ - \dfrac{{d[A]}}{{dt}} = {k_1}[A] + {k_2}[A]$
x = concentration of products formed
So,
\[x = {[A]^0} - [A]\]
This equation can be used for rate of change of A
$\dfrac{{dx}}{{dt}} = k1({[A]^0} - x) + k2({[A]^0} - x)$
$\Rightarrow$ $\dfrac{{dx}}{{dt}} = (9k1 + k2)({[A]^0} - X)$
$\Rightarrow$ $(k1 + k2)t = In\left( {\dfrac{{{{[A]}^0}}}{{{{[A]}^0} - x}}} \right)$
$\Rightarrow$ $x = {[A]^0}(1 - {e^{ - (k1 + k2)t}})$
$\Rightarrow$ $x2 = {[A]^0}(1 - {e^{ - (o + k2)t}})$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{{{[A]}^0}k2t}}{{{{[A]}^0}(k1 + k2)t}}$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{k2}}{{k1 + k2}}$
By solving the equation, we get the maximum percentage yield of ketene.
$\dfrac{{[B]}}{{[C]}} = \dfrac{{k1}}{{k2}}\,or\,\dfrac{{[C]}}{{[B]}} = \dfrac{{k2}}{{k1}}$
Complete step by step solution:
We have
${k_1} = 3.8{\sec ^{ - 1}}$
${k_2} = 0.2{\sec ^{ - 1}}$
This equation is used for rate of change of Acetic acid
\[{[C{H_2}CO]_\infty } = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times {[C{H_3}COOH]_0}\]
$\Rightarrow$ $\dfrac{{{{[C{H_2}CO]}_\infty }}}{{{{[C{H_3}COOH]}_0}}} = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times 100\% $
$\Rightarrow$ $\dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100 = \dfrac{{{k_2}}}{{{k_1}}}}} \times 100 = \dfrac{{0.2}}{{3.8}} \times 100 = 0.05\% \dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100}}$
So, the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature is \[5\% \].
Hence, the correct answer is option A.
Note: The alternative method used can be:
Rate of change of Acetic acid
$ - \dfrac{{d[A]}}{{dt}} = {k_1}[A] + {k_2}[A]$
x = concentration of products formed
So,
\[x = {[A]^0} - [A]\]
This equation can be used for rate of change of A
$\dfrac{{dx}}{{dt}} = k1({[A]^0} - x) + k2({[A]^0} - x)$
$\Rightarrow$ $\dfrac{{dx}}{{dt}} = (9k1 + k2)({[A]^0} - X)$
$\Rightarrow$ $(k1 + k2)t = In\left( {\dfrac{{{{[A]}^0}}}{{{{[A]}^0} - x}}} \right)$
$\Rightarrow$ $x = {[A]^0}(1 - {e^{ - (k1 + k2)t}})$
$\Rightarrow$ $x2 = {[A]^0}(1 - {e^{ - (o + k2)t}})$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{{{[A]}^0}k2t}}{{{{[A]}^0}(k1 + k2)t}}$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{k2}}{{k1 + k2}}$
By solving the equation, we get the maximum percentage yield of ketene.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

