
The gas phase decomposition of acetic acid at 1189 K proceeds by way of two parallel reactions.
$C{H_3}COOH \to C{H_4} + C{O_2}\,{k_1} = 3.8{\sec ^{ - 1}}$
$C{H_3}COOH \to C{H_2} = C = O + {H_2}O\,{k_2} = 0.2{\sec ^{ - 1}}$
What is the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature?
A. \[5\% \]
B. \[95\% \]
C. \[15\% \]
D. \[10\% \]
Answer
569.4k+ views
Hint: The two parallel reactions are given. The ratio of concentration of this reaction is following:
$\dfrac{{[B]}}{{[C]}} = \dfrac{{k1}}{{k2}}\,or\,\dfrac{{[C]}}{{[B]}} = \dfrac{{k2}}{{k1}}$
Complete step by step solution:
We have
${k_1} = 3.8{\sec ^{ - 1}}$
${k_2} = 0.2{\sec ^{ - 1}}$
This equation is used for rate of change of Acetic acid
\[{[C{H_2}CO]_\infty } = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times {[C{H_3}COOH]_0}\]
$\Rightarrow$ $\dfrac{{{{[C{H_2}CO]}_\infty }}}{{{{[C{H_3}COOH]}_0}}} = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times 100\% $
$\Rightarrow$ $\dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100 = \dfrac{{{k_2}}}{{{k_1}}}}} \times 100 = \dfrac{{0.2}}{{3.8}} \times 100 = 0.05\% \dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100}}$
So, the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature is \[5\% \].
Hence, the correct answer is option A.
Note: The alternative method used can be:
Rate of change of Acetic acid
$ - \dfrac{{d[A]}}{{dt}} = {k_1}[A] + {k_2}[A]$
x = concentration of products formed
So,
\[x = {[A]^0} - [A]\]
This equation can be used for rate of change of A
$\dfrac{{dx}}{{dt}} = k1({[A]^0} - x) + k2({[A]^0} - x)$
$\Rightarrow$ $\dfrac{{dx}}{{dt}} = (9k1 + k2)({[A]^0} - X)$
$\Rightarrow$ $(k1 + k2)t = In\left( {\dfrac{{{{[A]}^0}}}{{{{[A]}^0} - x}}} \right)$
$\Rightarrow$ $x = {[A]^0}(1 - {e^{ - (k1 + k2)t}})$
$\Rightarrow$ $x2 = {[A]^0}(1 - {e^{ - (o + k2)t}})$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{{{[A]}^0}k2t}}{{{{[A]}^0}(k1 + k2)t}}$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{k2}}{{k1 + k2}}$
By solving the equation, we get the maximum percentage yield of ketene.
$\dfrac{{[B]}}{{[C]}} = \dfrac{{k1}}{{k2}}\,or\,\dfrac{{[C]}}{{[B]}} = \dfrac{{k2}}{{k1}}$
Complete step by step solution:
We have
${k_1} = 3.8{\sec ^{ - 1}}$
${k_2} = 0.2{\sec ^{ - 1}}$
This equation is used for rate of change of Acetic acid
\[{[C{H_2}CO]_\infty } = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times {[C{H_3}COOH]_0}\]
$\Rightarrow$ $\dfrac{{{{[C{H_2}CO]}_\infty }}}{{{{[C{H_3}COOH]}_0}}} = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times 100\% $
$\Rightarrow$ $\dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100 = \dfrac{{{k_2}}}{{{k_1}}}}} \times 100 = \dfrac{{0.2}}{{3.8}} \times 100 = 0.05\% \dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100}}$
So, the maximum percentage yield of the ketene $C{H_2}CO$ obtainable at this temperature is \[5\% \].
Hence, the correct answer is option A.
Note: The alternative method used can be:
Rate of change of Acetic acid
$ - \dfrac{{d[A]}}{{dt}} = {k_1}[A] + {k_2}[A]$
x = concentration of products formed
So,
\[x = {[A]^0} - [A]\]
This equation can be used for rate of change of A
$\dfrac{{dx}}{{dt}} = k1({[A]^0} - x) + k2({[A]^0} - x)$
$\Rightarrow$ $\dfrac{{dx}}{{dt}} = (9k1 + k2)({[A]^0} - X)$
$\Rightarrow$ $(k1 + k2)t = In\left( {\dfrac{{{{[A]}^0}}}{{{{[A]}^0} - x}}} \right)$
$\Rightarrow$ $x = {[A]^0}(1 - {e^{ - (k1 + k2)t}})$
$\Rightarrow$ $x2 = {[A]^0}(1 - {e^{ - (o + k2)t}})$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{{{[A]}^0}k2t}}{{{{[A]}^0}(k1 + k2)t}}$
$\Rightarrow$ $\dfrac{{x2}}{x} = \dfrac{{k2}}{{k1 + k2}}$
By solving the equation, we get the maximum percentage yield of ketene.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

