
The expression ${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$ is equal to
A) $0$
B) $1$
C) ${\sec ^2}A$
D) ${\operatorname{cosec} ^2}A$
Answer
555.6k+ views
Hint: In this question, use the trigonometry properties of $\sin x$ and $\cos x$ for solving these types of questions. Also use the algebraic formula of cubic and squares the terms for expanding the term to simplify the expression.
Complete step by step solution:
First, we write required trigonometric properties as shown below,
$ \Rightarrow {\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow \tan x = \dfrac{{\sin x}}{{\cos x}}$
$ \Rightarrow \sec x = \dfrac{1}{{\cos x}}$
Now, we write the required algebraic formulas as,
$ \Rightarrow {x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + {y^2} + xy} \right)$
$ \Rightarrow {x^2} + {y^2} = {\left( {x + y} \right)^2} - 2xy$
In this question, we have given trigonometric expression as,
${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$
Now we will break the given trigonometric expression into two parts or the trigonometric expression can be written as \[P - Q\].
Here, $P = {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A$ and $Q = \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$
Now we can write the expression as,$ \Rightarrow {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right) = P - Q$
First, we will solve the term $P$ by expanding the $\csc $ and $\cot $ terms in $\sin $ and $\cos $ terms because it is easy to solve and calculate.
$ \Rightarrow P = {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A$
Now we will apply the trigonometric properties as,
$ \Rightarrow P = \dfrac{1}{{{{\sin }^2}A}} \times \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} - \dfrac{1}{{{{\cos }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}$
Now, we will simplify the above expression as,
$ \Rightarrow P = \dfrac{{{{\cos }^2}A}}{{{{\sin }^4}A}} - \dfrac{{{{\sin }^2}A}}{{{{\cos }^4}A}}$
After simplification we will get,
$ \Rightarrow P = \dfrac{{{{\cos }^6}A - {{\sin }^6}A}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now we will use the algebraic formula in the numerator of the expression to find the easiest form and then solve it accordingly.
$ \Rightarrow P = \dfrac{{{{\left( {{{\cos }^2}A} \right)}^3} - {{\left( {{{\sin }^2}A} \right)}^3}}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will apply the algebraic properties as,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\cos }^4}A + {{\sin }^4}A + {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will simplify the above expression as,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\left( {{{\cos }^2}A + {{\sin }^2}A} \right)}^2} - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
After simplification we will get,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now we will solve the term $Q$ by expanding the $\csc $ and $\cot $ terms in $\sin $ and $\cos $terms because it is easy to solve and calculate.
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} - \dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}} \right)\left( {\dfrac{1}{{{{\cos }^2}A}} + \dfrac{1}{{{{\sin }^2}A}} - 1} \right)$
Now, we will apply the algebraic properties as,
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^4}A - {{\sin }^4}A}}{{\left( {{{\sin }^2}A} \right)\left( {{{\cos }^2}A} \right)}}} \right)\left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A - {{\sin }^2}A{{\cos }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right)$
Now, we will simplify the above expression as,
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^4}A - {{\sin }^4}A}}{{\left( {{{\sin }^2}A} \right)\left( {{{\cos }^2}A} \right)}}} \right)\left( {\dfrac{{1 - {{\sin }^2}A{{\cos }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right)$
After simplification we will get,
$ \Rightarrow Q = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will substitute $\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$ for $P$ and $\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$ for$Q$ in the expression \[P - Q\] to find the solution of the trigonometric expression.
\[ \Rightarrow P - Q = \left[
\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}} \\
- \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}} \\ \right]\]
After simplification, we will get
\[\therefore P - Q = 0\]
Therefore, the solution of the trigonometric expression ${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$ is $0$.
Note: As we know that trigonometry is the most important and useful topic of mathematics. There is some basic formula used to solve the questions or convert the easiest form. The trigonometric expression represents the relation between the sine and cosine and tangent of the function, or it can be said that it is a reciprocal relation of sine and cosine.
Complete step by step solution:
First, we write required trigonometric properties as shown below,
$ \Rightarrow {\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow \tan x = \dfrac{{\sin x}}{{\cos x}}$
$ \Rightarrow \sec x = \dfrac{1}{{\cos x}}$
Now, we write the required algebraic formulas as,
$ \Rightarrow {x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + {y^2} + xy} \right)$
$ \Rightarrow {x^2} + {y^2} = {\left( {x + y} \right)^2} - 2xy$
In this question, we have given trigonometric expression as,
${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$
Now we will break the given trigonometric expression into two parts or the trigonometric expression can be written as \[P - Q\].
Here, $P = {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A$ and $Q = \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$
Now we can write the expression as,$ \Rightarrow {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right) = P - Q$
First, we will solve the term $P$ by expanding the $\csc $ and $\cot $ terms in $\sin $ and $\cos $ terms because it is easy to solve and calculate.
$ \Rightarrow P = {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A$
Now we will apply the trigonometric properties as,
$ \Rightarrow P = \dfrac{1}{{{{\sin }^2}A}} \times \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} - \dfrac{1}{{{{\cos }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}$
Now, we will simplify the above expression as,
$ \Rightarrow P = \dfrac{{{{\cos }^2}A}}{{{{\sin }^4}A}} - \dfrac{{{{\sin }^2}A}}{{{{\cos }^4}A}}$
After simplification we will get,
$ \Rightarrow P = \dfrac{{{{\cos }^6}A - {{\sin }^6}A}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now we will use the algebraic formula in the numerator of the expression to find the easiest form and then solve it accordingly.
$ \Rightarrow P = \dfrac{{{{\left( {{{\cos }^2}A} \right)}^3} - {{\left( {{{\sin }^2}A} \right)}^3}}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will apply the algebraic properties as,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\cos }^4}A + {{\sin }^4}A + {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will simplify the above expression as,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\left( {{{\cos }^2}A + {{\sin }^2}A} \right)}^2} - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
After simplification we will get,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now we will solve the term $Q$ by expanding the $\csc $ and $\cot $ terms in $\sin $ and $\cos $terms because it is easy to solve and calculate.
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} - \dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}} \right)\left( {\dfrac{1}{{{{\cos }^2}A}} + \dfrac{1}{{{{\sin }^2}A}} - 1} \right)$
Now, we will apply the algebraic properties as,
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^4}A - {{\sin }^4}A}}{{\left( {{{\sin }^2}A} \right)\left( {{{\cos }^2}A} \right)}}} \right)\left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A - {{\sin }^2}A{{\cos }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right)$
Now, we will simplify the above expression as,
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^4}A - {{\sin }^4}A}}{{\left( {{{\sin }^2}A} \right)\left( {{{\cos }^2}A} \right)}}} \right)\left( {\dfrac{{1 - {{\sin }^2}A{{\cos }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right)$
After simplification we will get,
$ \Rightarrow Q = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will substitute $\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$ for $P$ and $\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$ for$Q$ in the expression \[P - Q\] to find the solution of the trigonometric expression.
\[ \Rightarrow P - Q = \left[
\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}} \\
- \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}} \\ \right]\]
After simplification, we will get
\[\therefore P - Q = 0\]
Therefore, the solution of the trigonometric expression ${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$ is $0$.
Note: As we know that trigonometry is the most important and useful topic of mathematics. There is some basic formula used to solve the questions or convert the easiest form. The trigonometric expression represents the relation between the sine and cosine and tangent of the function, or it can be said that it is a reciprocal relation of sine and cosine.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

