
The expression ${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$ is equal to
A) $0$
B) $1$
C) ${\sec ^2}A$
D) ${\operatorname{cosec} ^2}A$
Answer
570.6k+ views
Hint: In this question, use the trigonometry properties of $\sin x$ and $\cos x$ for solving these types of questions. Also use the algebraic formula of cubic and squares the terms for expanding the term to simplify the expression.
Complete step by step solution:
First, we write required trigonometric properties as shown below,
$ \Rightarrow {\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow \tan x = \dfrac{{\sin x}}{{\cos x}}$
$ \Rightarrow \sec x = \dfrac{1}{{\cos x}}$
Now, we write the required algebraic formulas as,
$ \Rightarrow {x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + {y^2} + xy} \right)$
$ \Rightarrow {x^2} + {y^2} = {\left( {x + y} \right)^2} - 2xy$
In this question, we have given trigonometric expression as,
${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$
Now we will break the given trigonometric expression into two parts or the trigonometric expression can be written as \[P - Q\].
Here, $P = {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A$ and $Q = \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$
Now we can write the expression as,$ \Rightarrow {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right) = P - Q$
First, we will solve the term $P$ by expanding the $\csc $ and $\cot $ terms in $\sin $ and $\cos $ terms because it is easy to solve and calculate.
$ \Rightarrow P = {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A$
Now we will apply the trigonometric properties as,
$ \Rightarrow P = \dfrac{1}{{{{\sin }^2}A}} \times \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} - \dfrac{1}{{{{\cos }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}$
Now, we will simplify the above expression as,
$ \Rightarrow P = \dfrac{{{{\cos }^2}A}}{{{{\sin }^4}A}} - \dfrac{{{{\sin }^2}A}}{{{{\cos }^4}A}}$
After simplification we will get,
$ \Rightarrow P = \dfrac{{{{\cos }^6}A - {{\sin }^6}A}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now we will use the algebraic formula in the numerator of the expression to find the easiest form and then solve it accordingly.
$ \Rightarrow P = \dfrac{{{{\left( {{{\cos }^2}A} \right)}^3} - {{\left( {{{\sin }^2}A} \right)}^3}}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will apply the algebraic properties as,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\cos }^4}A + {{\sin }^4}A + {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will simplify the above expression as,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\left( {{{\cos }^2}A + {{\sin }^2}A} \right)}^2} - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
After simplification we will get,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now we will solve the term $Q$ by expanding the $\csc $ and $\cot $ terms in $\sin $ and $\cos $terms because it is easy to solve and calculate.
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} - \dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}} \right)\left( {\dfrac{1}{{{{\cos }^2}A}} + \dfrac{1}{{{{\sin }^2}A}} - 1} \right)$
Now, we will apply the algebraic properties as,
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^4}A - {{\sin }^4}A}}{{\left( {{{\sin }^2}A} \right)\left( {{{\cos }^2}A} \right)}}} \right)\left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A - {{\sin }^2}A{{\cos }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right)$
Now, we will simplify the above expression as,
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^4}A - {{\sin }^4}A}}{{\left( {{{\sin }^2}A} \right)\left( {{{\cos }^2}A} \right)}}} \right)\left( {\dfrac{{1 - {{\sin }^2}A{{\cos }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right)$
After simplification we will get,
$ \Rightarrow Q = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will substitute $\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$ for $P$ and $\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$ for$Q$ in the expression \[P - Q\] to find the solution of the trigonometric expression.
\[ \Rightarrow P - Q = \left[
\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}} \\
- \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}} \\ \right]\]
After simplification, we will get
\[\therefore P - Q = 0\]
Therefore, the solution of the trigonometric expression ${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$ is $0$.
Note: As we know that trigonometry is the most important and useful topic of mathematics. There is some basic formula used to solve the questions or convert the easiest form. The trigonometric expression represents the relation between the sine and cosine and tangent of the function, or it can be said that it is a reciprocal relation of sine and cosine.
Complete step by step solution:
First, we write required trigonometric properties as shown below,
$ \Rightarrow {\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow \tan x = \dfrac{{\sin x}}{{\cos x}}$
$ \Rightarrow \sec x = \dfrac{1}{{\cos x}}$
Now, we write the required algebraic formulas as,
$ \Rightarrow {x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + {y^2} + xy} \right)$
$ \Rightarrow {x^2} + {y^2} = {\left( {x + y} \right)^2} - 2xy$
In this question, we have given trigonometric expression as,
${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$
Now we will break the given trigonometric expression into two parts or the trigonometric expression can be written as \[P - Q\].
Here, $P = {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A$ and $Q = \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$
Now we can write the expression as,$ \Rightarrow {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right) = P - Q$
First, we will solve the term $P$ by expanding the $\csc $ and $\cot $ terms in $\sin $ and $\cos $ terms because it is easy to solve and calculate.
$ \Rightarrow P = {\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A$
Now we will apply the trigonometric properties as,
$ \Rightarrow P = \dfrac{1}{{{{\sin }^2}A}} \times \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} - \dfrac{1}{{{{\cos }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}$
Now, we will simplify the above expression as,
$ \Rightarrow P = \dfrac{{{{\cos }^2}A}}{{{{\sin }^4}A}} - \dfrac{{{{\sin }^2}A}}{{{{\cos }^4}A}}$
After simplification we will get,
$ \Rightarrow P = \dfrac{{{{\cos }^6}A - {{\sin }^6}A}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now we will use the algebraic formula in the numerator of the expression to find the easiest form and then solve it accordingly.
$ \Rightarrow P = \dfrac{{{{\left( {{{\cos }^2}A} \right)}^3} - {{\left( {{{\sin }^2}A} \right)}^3}}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will apply the algebraic properties as,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\cos }^4}A + {{\sin }^4}A + {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will simplify the above expression as,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\left( {{{\cos }^2}A + {{\sin }^2}A} \right)}^2} - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
After simplification we will get,
$ \Rightarrow P = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now we will solve the term $Q$ by expanding the $\csc $ and $\cot $ terms in $\sin $ and $\cos $terms because it is easy to solve and calculate.
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} - \dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}} \right)\left( {\dfrac{1}{{{{\cos }^2}A}} + \dfrac{1}{{{{\sin }^2}A}} - 1} \right)$
Now, we will apply the algebraic properties as,
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^4}A - {{\sin }^4}A}}{{\left( {{{\sin }^2}A} \right)\left( {{{\cos }^2}A} \right)}}} \right)\left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A - {{\sin }^2}A{{\cos }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right)$
Now, we will simplify the above expression as,
$ \Rightarrow Q = \left( {\dfrac{{{{\cos }^4}A - {{\sin }^4}A}}{{\left( {{{\sin }^2}A} \right)\left( {{{\cos }^2}A} \right)}}} \right)\left( {\dfrac{{1 - {{\sin }^2}A{{\cos }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right)$
After simplification we will get,
$ \Rightarrow Q = \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$
Now, we will substitute $\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$ for $P$ and $\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}}$ for$Q$ in the expression \[P - Q\] to find the solution of the trigonometric expression.
\[ \Rightarrow P - Q = \left[
\dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}} \\
- \dfrac{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}A{{\cos }^2}A} \right)}}{{\left( {{{\sin }^4}A} \right)\left( {{{\cos }^4}A} \right)}} \\ \right]\]
After simplification, we will get
\[\therefore P - Q = 0\]
Therefore, the solution of the trigonometric expression ${\operatorname{cosec} ^2}A{\cot ^2}A - {\sec ^2}A{\tan ^2}A - \left( {{{\cot }^2}A - {{\tan }^2}A} \right)\left( {{{\sec }^2}A + {{\operatorname{cosec} }^2}A - 1} \right)$ is $0$.
Note: As we know that trigonometry is the most important and useful topic of mathematics. There is some basic formula used to solve the questions or convert the easiest form. The trigonometric expression represents the relation between the sine and cosine and tangent of the function, or it can be said that it is a reciprocal relation of sine and cosine.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

What are the public facilities provided by the government? Also explain each facility

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

