
The equation of the chord of contact of tangents drawn from the point \[\left( {2, - 3} \right)\] to the circle \[{x^2} + {y^2} + 4x - 6y - 12 = 0\] is
(A) \[4x - 6y - 17 = 0\]
(B) \[4x + 6y - 17 = 0\]
(C) \[4x + 6y + 17 = 0\]
(D) None of these
Answer
486.3k+ views
Hint: To find the equation of the chord of contact of tangents drawn from the point \[\left( {2, - 3} \right)\] to the circle, we will first put the given point in the equation of the given circle and find out whether it is greater than, less than or equal to zero. i.e., either the point lies outside, inside or on the circle. Then we will put the given point in the equation of the chord to find it.
Complete step-by-step solution:
The chord joining the points of contact of the two tangents to a conic drawn from a given point, outside it, is called the chord of contact of tangents.
The equation of the chord of contact of tangents drawn from a point \[\left( {{x_1},{y_1}} \right)\] to the circle \[{x^2} + {y^2} + 2gx + 2fy + c = 0\] is given by \[{x_1}x + {y_1}y + g\left( {{x_1} + x} \right) + f\left( {{y_1} + y} \right) + c = 0\] . It is also written as \[T = 0\] .
Given circle is \[{x^2} + {y^2} + 4x - 6y - 12 = 0\]
Here, \[g = 2\] , \[f = - 3\] , \[c = - 12\]
Let \[P(2, - 3)\] be the point from where tangents are drawn.
Putting \[P(2, - 3)\] in the equation of given circle
\[ = {\left( 2 \right)^2} + {\left( { - 3} \right)^2} + 4\left( 2 \right) - 6\left( { - 3} \right) - 12\]
On solving,
\[ = 4 + 9 + 8 + 18 - 12\]
\[ = 27\] , which is greater than zero.
Hence, the point \[P(2, - 3)\] lies outside the circle.
Therefore, for point \[P(2, - 3)\] , equation of the chord of contact is given by
\[ \Rightarrow 2x - 3y + 2\left( {2 + x} \right) - 3\left( { - 3 + y} \right) - 12 = 0\]
On solving,
\[ \Rightarrow 2x - 3y + 4 + 2x + 9 - 3y - 12 = 0\]
\[ \Rightarrow 4x - 6y + 1 = 0\]
Therefore, the equation of the chord of contact of tangents drawn from the point \[\left( {2, - 3} \right)\] to the circle is \[4x - 6y + 1 = 0\] .
Hence, option (D) is correct.
Note: The equation of the tangent on a point of the circle and the equation of a chord of contact are both given by \[T = 0\] . The difference is that in the case of a chord of contact point \[P\] lies outside the circle while in the case of a tangent the point \[P\] lies on the circle.
Complete step-by-step solution:
The chord joining the points of contact of the two tangents to a conic drawn from a given point, outside it, is called the chord of contact of tangents.
The equation of the chord of contact of tangents drawn from a point \[\left( {{x_1},{y_1}} \right)\] to the circle \[{x^2} + {y^2} + 2gx + 2fy + c = 0\] is given by \[{x_1}x + {y_1}y + g\left( {{x_1} + x} \right) + f\left( {{y_1} + y} \right) + c = 0\] . It is also written as \[T = 0\] .
Given circle is \[{x^2} + {y^2} + 4x - 6y - 12 = 0\]
Here, \[g = 2\] , \[f = - 3\] , \[c = - 12\]
Let \[P(2, - 3)\] be the point from where tangents are drawn.
Putting \[P(2, - 3)\] in the equation of given circle
\[ = {\left( 2 \right)^2} + {\left( { - 3} \right)^2} + 4\left( 2 \right) - 6\left( { - 3} \right) - 12\]
On solving,
\[ = 4 + 9 + 8 + 18 - 12\]
\[ = 27\] , which is greater than zero.
Hence, the point \[P(2, - 3)\] lies outside the circle.
Therefore, for point \[P(2, - 3)\] , equation of the chord of contact is given by
\[ \Rightarrow 2x - 3y + 2\left( {2 + x} \right) - 3\left( { - 3 + y} \right) - 12 = 0\]
On solving,
\[ \Rightarrow 2x - 3y + 4 + 2x + 9 - 3y - 12 = 0\]
\[ \Rightarrow 4x - 6y + 1 = 0\]
Therefore, the equation of the chord of contact of tangents drawn from the point \[\left( {2, - 3} \right)\] to the circle is \[4x - 6y + 1 = 0\] .
Hence, option (D) is correct.
Note: The equation of the tangent on a point of the circle and the equation of a chord of contact are both given by \[T = 0\] . The difference is that in the case of a chord of contact point \[P\] lies outside the circle while in the case of a tangent the point \[P\] lies on the circle.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

