
The equation of perpendicular bisector of the line segment joining the points $\left( {1,2} \right)$ and $\left( { - 2,0} \right)$ is
a)$5x + 2y = 1$ b.) $4x + 6y = 1$
c)$6x + 4y = 1$ d.) none
Answer
584.7k+ views
Hint:- Equation of the perpendicular bisector can be found by using slope of the line. So at first, try to find out the slope of AB and hence the slope of CD.
Complete step-by-step answer:
In the above question, the equation of the perpendicular bisector of the line segment is asked to us.
The two given points are $\left( {1,2} \right)$ and $\left( { - 2,0} \right)$
Complete step-by-step answer:
In the above question, the equation of the perpendicular bisector of the line segment is asked to us.
The two given points are $\left( {1,2} \right)$ and $\left( { - 2,0} \right)$
Let ‘p’ be the mid-point of the line AB joining the points A(1,2) and B(-2,0)
So, using midpoint formula:-
${\text{P}} \equiv \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Here, ${x_1} = 1\;\;;{y_1} = 2$
${x_2} = - 2\;;{y_2} = 0$
So, \[{\text{P}} \equiv \left( {\dfrac{{1 + \left( { - 2} \right)}}{2},\dfrac{{2 + 0}}{2}} \right)\]
$ \Rightarrow {\text{P}} \equiv \left( {\dfrac{{1 - 2}}{2},\dfrac{2}{2}} \right)$
$ \Rightarrow {\text{P}} \equiv \left( {\dfrac{{ - 1}}{2},1} \right) \to $ midpoint of AB.
Now, slope of AB $ = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
So, ${x_1} = 1\;;{y_1} = 2$
${x_2} = - 2\,;{y_2} = 0$
⇒ slope of AB $ = \dfrac{{0 - 2}}{{ - 2 - 1}} = \dfrac{{ - 2}}{{ - 3}}$
$\therefore $ slope of AB $ = {\raise0.5ex\hbox{$\scriptstyle 2$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 3$}}.$
So, slope of line perpendicular to AB
$ = \dfrac{{ - 1}}{{{\text{slope}}\;{\text{of}}\;{\text{AB}}}}$
$ = \dfrac{{ - 1}}{{{\raise0.5ex\hbox{$\scriptstyle 2$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 3$}}}} = \boxed{\dfrac{{ - 3}}{2}} \to $ Slope of perpendicular line to AB.
$\therefore $ equation of perpendicular bisector;
$ \Rightarrow \left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)$
Where $\left( {{x_1},{y_1}} \right)$ are the points and ‘m’ is the slope;
$ \Rightarrow y - 1 = \dfrac{{ - 3}}{2}\left( {x - \left( {{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right)} \right)$
$ \Rightarrow y - 1 = \dfrac{{ - 3}}{2}\left( {x + \dfrac{1}{2}} \right)$
$ \Rightarrow 2y - 2 = - 3\left( {x + \dfrac{1}{2}} \right)$
$ \Rightarrow 2y - 2 = - 3\left( {\dfrac{{2x + 1}}{2}} \right)$
$ \Rightarrow 4y - 4 = - 6x - 3$
$ \Rightarrow 4y + 6x = - 3 + 4$
$ \Rightarrow 6x + 4y = 1$
$ \Rightarrow \boxed{6x + 4y - 1 = 0}$
$\therefore $ equation of line $6x + 4y - 1 = 0$
Note:- For the equation of perpendicular bisectors, we need the points, and for that purpose we find the midpoint of line AB.
Midpoint of a line with points ${\text{A}}\left( {{x_1},{y_1}} \right)$ and \[{\text{B}}\left( {{x_1},{y_2}} \right)\] \[ \equiv \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
and $e{q^n}$of line:-$\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)$ where $\left( {{x_1},{y_1}} \right)$ are the points and ‘m’ is the slope of the line.
${\text{P}} \equiv \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Here, ${x_1} = 1\;\;;{y_1} = 2$
${x_2} = - 2\;;{y_2} = 0$
So, \[{\text{P}} \equiv \left( {\dfrac{{1 + \left( { - 2} \right)}}{2},\dfrac{{2 + 0}}{2}} \right)\]
$ \Rightarrow {\text{P}} \equiv \left( {\dfrac{{1 - 2}}{2},\dfrac{2}{2}} \right)$
$ \Rightarrow {\text{P}} \equiv \left( {\dfrac{{ - 1}}{2},1} \right) \to $ midpoint of AB.
Now, slope of AB $ = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
So, ${x_1} = 1\;;{y_1} = 2$
${x_2} = - 2\,;{y_2} = 0$
⇒ slope of AB $ = \dfrac{{0 - 2}}{{ - 2 - 1}} = \dfrac{{ - 2}}{{ - 3}}$
$\therefore $ slope of AB $ = {\raise0.5ex\hbox{$\scriptstyle 2$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 3$}}.$
So, slope of line perpendicular to AB
$ = \dfrac{{ - 1}}{{{\text{slope}}\;{\text{of}}\;{\text{AB}}}}$
$ = \dfrac{{ - 1}}{{{\raise0.5ex\hbox{$\scriptstyle 2$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 3$}}}} = \boxed{\dfrac{{ - 3}}{2}} \to $ Slope of perpendicular line to AB.
$\therefore $ equation of perpendicular bisector;
$ \Rightarrow \left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)$
Where $\left( {{x_1},{y_1}} \right)$ are the points and ‘m’ is the slope;
$ \Rightarrow y - 1 = \dfrac{{ - 3}}{2}\left( {x - \left( {{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right)} \right)$
$ \Rightarrow y - 1 = \dfrac{{ - 3}}{2}\left( {x + \dfrac{1}{2}} \right)$
$ \Rightarrow 2y - 2 = - 3\left( {x + \dfrac{1}{2}} \right)$
$ \Rightarrow 2y - 2 = - 3\left( {\dfrac{{2x + 1}}{2}} \right)$
$ \Rightarrow 4y - 4 = - 6x - 3$
$ \Rightarrow 4y + 6x = - 3 + 4$
$ \Rightarrow 6x + 4y = 1$
$ \Rightarrow \boxed{6x + 4y - 1 = 0}$
$\therefore $ equation of line $6x + 4y - 1 = 0$
Note:- For the equation of perpendicular bisectors, we need the points, and for that purpose we find the midpoint of line AB.
Midpoint of a line with points ${\text{A}}\left( {{x_1},{y_1}} \right)$ and \[{\text{B}}\left( {{x_1},{y_2}} \right)\] \[ \equiv \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
and $e{q^n}$of line:-$\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)$ where $\left( {{x_1},{y_1}} \right)$ are the points and ‘m’ is the slope of the line.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

