
The equation of perpendicular bisector of the line segment joining the points $\left( {1,2} \right)$ and $\left( { - 2,0} \right)$ is
a)$5x + 2y = 1$ b.) $4x + 6y = 1$
c)$6x + 4y = 1$ d.) none
Answer
596.1k+ views
Hint:- Equation of the perpendicular bisector can be found by using slope of the line. So at first, try to find out the slope of AB and hence the slope of CD.
Complete step-by-step answer:
In the above question, the equation of the perpendicular bisector of the line segment is asked to us.
The two given points are $\left( {1,2} \right)$ and $\left( { - 2,0} \right)$
Complete step-by-step answer:
In the above question, the equation of the perpendicular bisector of the line segment is asked to us.
The two given points are $\left( {1,2} \right)$ and $\left( { - 2,0} \right)$
Let ‘p’ be the mid-point of the line AB joining the points A(1,2) and B(-2,0)
So, using midpoint formula:-
${\text{P}} \equiv \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Here, ${x_1} = 1\;\;;{y_1} = 2$
${x_2} = - 2\;;{y_2} = 0$
So, \[{\text{P}} \equiv \left( {\dfrac{{1 + \left( { - 2} \right)}}{2},\dfrac{{2 + 0}}{2}} \right)\]
$ \Rightarrow {\text{P}} \equiv \left( {\dfrac{{1 - 2}}{2},\dfrac{2}{2}} \right)$
$ \Rightarrow {\text{P}} \equiv \left( {\dfrac{{ - 1}}{2},1} \right) \to $ midpoint of AB.
Now, slope of AB $ = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
So, ${x_1} = 1\;;{y_1} = 2$
${x_2} = - 2\,;{y_2} = 0$
⇒ slope of AB $ = \dfrac{{0 - 2}}{{ - 2 - 1}} = \dfrac{{ - 2}}{{ - 3}}$
$\therefore $ slope of AB $ = {\raise0.5ex\hbox{$\scriptstyle 2$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 3$}}.$
So, slope of line perpendicular to AB
$ = \dfrac{{ - 1}}{{{\text{slope}}\;{\text{of}}\;{\text{AB}}}}$
$ = \dfrac{{ - 1}}{{{\raise0.5ex\hbox{$\scriptstyle 2$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 3$}}}} = \boxed{\dfrac{{ - 3}}{2}} \to $ Slope of perpendicular line to AB.
$\therefore $ equation of perpendicular bisector;
$ \Rightarrow \left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)$
Where $\left( {{x_1},{y_1}} \right)$ are the points and ‘m’ is the slope;
$ \Rightarrow y - 1 = \dfrac{{ - 3}}{2}\left( {x - \left( {{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right)} \right)$
$ \Rightarrow y - 1 = \dfrac{{ - 3}}{2}\left( {x + \dfrac{1}{2}} \right)$
$ \Rightarrow 2y - 2 = - 3\left( {x + \dfrac{1}{2}} \right)$
$ \Rightarrow 2y - 2 = - 3\left( {\dfrac{{2x + 1}}{2}} \right)$
$ \Rightarrow 4y - 4 = - 6x - 3$
$ \Rightarrow 4y + 6x = - 3 + 4$
$ \Rightarrow 6x + 4y = 1$
$ \Rightarrow \boxed{6x + 4y - 1 = 0}$
$\therefore $ equation of line $6x + 4y - 1 = 0$
Note:- For the equation of perpendicular bisectors, we need the points, and for that purpose we find the midpoint of line AB.
Midpoint of a line with points ${\text{A}}\left( {{x_1},{y_1}} \right)$ and \[{\text{B}}\left( {{x_1},{y_2}} \right)\] \[ \equiv \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
and $e{q^n}$of line:-$\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)$ where $\left( {{x_1},{y_1}} \right)$ are the points and ‘m’ is the slope of the line.
${\text{P}} \equiv \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Here, ${x_1} = 1\;\;;{y_1} = 2$
${x_2} = - 2\;;{y_2} = 0$
So, \[{\text{P}} \equiv \left( {\dfrac{{1 + \left( { - 2} \right)}}{2},\dfrac{{2 + 0}}{2}} \right)\]
$ \Rightarrow {\text{P}} \equiv \left( {\dfrac{{1 - 2}}{2},\dfrac{2}{2}} \right)$
$ \Rightarrow {\text{P}} \equiv \left( {\dfrac{{ - 1}}{2},1} \right) \to $ midpoint of AB.
Now, slope of AB $ = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
So, ${x_1} = 1\;;{y_1} = 2$
${x_2} = - 2\,;{y_2} = 0$
⇒ slope of AB $ = \dfrac{{0 - 2}}{{ - 2 - 1}} = \dfrac{{ - 2}}{{ - 3}}$
$\therefore $ slope of AB $ = {\raise0.5ex\hbox{$\scriptstyle 2$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 3$}}.$
So, slope of line perpendicular to AB
$ = \dfrac{{ - 1}}{{{\text{slope}}\;{\text{of}}\;{\text{AB}}}}$
$ = \dfrac{{ - 1}}{{{\raise0.5ex\hbox{$\scriptstyle 2$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 3$}}}} = \boxed{\dfrac{{ - 3}}{2}} \to $ Slope of perpendicular line to AB.
$\therefore $ equation of perpendicular bisector;
$ \Rightarrow \left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)$
Where $\left( {{x_1},{y_1}} \right)$ are the points and ‘m’ is the slope;
$ \Rightarrow y - 1 = \dfrac{{ - 3}}{2}\left( {x - \left( {{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right)} \right)$
$ \Rightarrow y - 1 = \dfrac{{ - 3}}{2}\left( {x + \dfrac{1}{2}} \right)$
$ \Rightarrow 2y - 2 = - 3\left( {x + \dfrac{1}{2}} \right)$
$ \Rightarrow 2y - 2 = - 3\left( {\dfrac{{2x + 1}}{2}} \right)$
$ \Rightarrow 4y - 4 = - 6x - 3$
$ \Rightarrow 4y + 6x = - 3 + 4$
$ \Rightarrow 6x + 4y = 1$
$ \Rightarrow \boxed{6x + 4y - 1 = 0}$
$\therefore $ equation of line $6x + 4y - 1 = 0$
Note:- For the equation of perpendicular bisectors, we need the points, and for that purpose we find the midpoint of line AB.
Midpoint of a line with points ${\text{A}}\left( {{x_1},{y_1}} \right)$ and \[{\text{B}}\left( {{x_1},{y_2}} \right)\] \[ \equiv \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
and $e{q^n}$of line:-$\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)$ where $\left( {{x_1},{y_1}} \right)$ are the points and ‘m’ is the slope of the line.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

