
The equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle, if
$
{\text{A}}{\text{. k < }}\sqrt 2 \\
{\text{B}}{\text{. k > }}\sqrt 2 \\
{\text{C}}{\text{.|k| < }}\dfrac{1}{{\sqrt 2 }} \\
{\text{D}}{\text{. 0 < |K| }} \leqslant {\text{ }}\dfrac{1}{{\sqrt 2 }} \\
$
Answer
604.2k+ views
Hint: To check if the equation represents a circle, we transform the given circle equation into the general form of a circle. We then use the condition that represents a real circle to verify.
Complete step-by-step answer:
We know, for an equation ${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$ to represent a real circle, the condition is $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$.
Given equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$
We divide the equation by k and compare it with the circle equation we get,
${{\text{x}}^2} + {{\text{y}}^2} - \dfrac{1}{{\text{k}}}{\text{x - }}\dfrac{1}{{\text{k}}}{\text{y + 1 = 0}}$
$ \Rightarrow {\text{g = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , f = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , c = 1}}$
To represent a circle, $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$ must hold true,
$
\Rightarrow \sqrt {\left( {{{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} + {{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} - 1} \right)} > 0 \\
\Rightarrow \sqrt {\dfrac{1}{{4{{\text{k}}^2}}} + \dfrac{1}{{4{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \sqrt {\dfrac{1}{{2{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \dfrac{1}{{2{{\text{k}}^2}}}{\text{ > 1}} \\
\Rightarrow {\text{1 > 2}}{{\text{k}}^2} \\
\Rightarrow \dfrac{1}{2} > {{\text{k}}^2} \\
\Rightarrow |{\text{k| < }}\dfrac{1}{{\sqrt 2 }} \\
$
Hence, for the equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle if ${\text{|k| < }}\dfrac{1}{{\sqrt 2 }}$.
Option C is the right answer.
Note: In order to solve such types of questions the key is to have adequate knowledge of the general equation and conditions for a circle to represent a real circle. And then we modify the given circle into the form of a general equation of a circle and use the required condition, we have to be very careful while comparing the given equation with the general form of circle to obtain the values of g and f.
Complete step-by-step answer:
We know, for an equation ${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$ to represent a real circle, the condition is $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$.
Given equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$
We divide the equation by k and compare it with the circle equation we get,
${{\text{x}}^2} + {{\text{y}}^2} - \dfrac{1}{{\text{k}}}{\text{x - }}\dfrac{1}{{\text{k}}}{\text{y + 1 = 0}}$
$ \Rightarrow {\text{g = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , f = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , c = 1}}$
To represent a circle, $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$ must hold true,
$
\Rightarrow \sqrt {\left( {{{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} + {{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} - 1} \right)} > 0 \\
\Rightarrow \sqrt {\dfrac{1}{{4{{\text{k}}^2}}} + \dfrac{1}{{4{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \sqrt {\dfrac{1}{{2{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \dfrac{1}{{2{{\text{k}}^2}}}{\text{ > 1}} \\
\Rightarrow {\text{1 > 2}}{{\text{k}}^2} \\
\Rightarrow \dfrac{1}{2} > {{\text{k}}^2} \\
\Rightarrow |{\text{k| < }}\dfrac{1}{{\sqrt 2 }} \\
$
Hence, for the equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle if ${\text{|k| < }}\dfrac{1}{{\sqrt 2 }}$.
Option C is the right answer.
Note: In order to solve such types of questions the key is to have adequate knowledge of the general equation and conditions for a circle to represent a real circle. And then we modify the given circle into the form of a general equation of a circle and use the required condition, we have to be very careful while comparing the given equation with the general form of circle to obtain the values of g and f.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

