
The equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle, if
$
{\text{A}}{\text{. k < }}\sqrt 2 \\
{\text{B}}{\text{. k > }}\sqrt 2 \\
{\text{C}}{\text{.|k| < }}\dfrac{1}{{\sqrt 2 }} \\
{\text{D}}{\text{. 0 < |K| }} \leqslant {\text{ }}\dfrac{1}{{\sqrt 2 }} \\
$
Answer
520.2k+ views
Hint: To check if the equation represents a circle, we transform the given circle equation into the general form of a circle. We then use the condition that represents a real circle to verify.
Complete step-by-step answer:
We know, for an equation ${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$ to represent a real circle, the condition is $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$.
Given equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$
We divide the equation by k and compare it with the circle equation we get,
${{\text{x}}^2} + {{\text{y}}^2} - \dfrac{1}{{\text{k}}}{\text{x - }}\dfrac{1}{{\text{k}}}{\text{y + 1 = 0}}$
$ \Rightarrow {\text{g = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , f = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , c = 1}}$
To represent a circle, $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$ must hold true,
$
\Rightarrow \sqrt {\left( {{{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} + {{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} - 1} \right)} > 0 \\
\Rightarrow \sqrt {\dfrac{1}{{4{{\text{k}}^2}}} + \dfrac{1}{{4{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \sqrt {\dfrac{1}{{2{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \dfrac{1}{{2{{\text{k}}^2}}}{\text{ > 1}} \\
\Rightarrow {\text{1 > 2}}{{\text{k}}^2} \\
\Rightarrow \dfrac{1}{2} > {{\text{k}}^2} \\
\Rightarrow |{\text{k| < }}\dfrac{1}{{\sqrt 2 }} \\
$
Hence, for the equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle if ${\text{|k| < }}\dfrac{1}{{\sqrt 2 }}$.
Option C is the right answer.
Note: In order to solve such types of questions the key is to have adequate knowledge of the general equation and conditions for a circle to represent a real circle. And then we modify the given circle into the form of a general equation of a circle and use the required condition, we have to be very careful while comparing the given equation with the general form of circle to obtain the values of g and f.
Complete step-by-step answer:
We know, for an equation ${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$ to represent a real circle, the condition is $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$.
Given equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$
We divide the equation by k and compare it with the circle equation we get,
${{\text{x}}^2} + {{\text{y}}^2} - \dfrac{1}{{\text{k}}}{\text{x - }}\dfrac{1}{{\text{k}}}{\text{y + 1 = 0}}$
$ \Rightarrow {\text{g = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , f = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , c = 1}}$
To represent a circle, $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$ must hold true,
$
\Rightarrow \sqrt {\left( {{{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} + {{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} - 1} \right)} > 0 \\
\Rightarrow \sqrt {\dfrac{1}{{4{{\text{k}}^2}}} + \dfrac{1}{{4{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \sqrt {\dfrac{1}{{2{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \dfrac{1}{{2{{\text{k}}^2}}}{\text{ > 1}} \\
\Rightarrow {\text{1 > 2}}{{\text{k}}^2} \\
\Rightarrow \dfrac{1}{2} > {{\text{k}}^2} \\
\Rightarrow |{\text{k| < }}\dfrac{1}{{\sqrt 2 }} \\
$
Hence, for the equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle if ${\text{|k| < }}\dfrac{1}{{\sqrt 2 }}$.
Option C is the right answer.
Note: In order to solve such types of questions the key is to have adequate knowledge of the general equation and conditions for a circle to represent a real circle. And then we modify the given circle into the form of a general equation of a circle and use the required condition, we have to be very careful while comparing the given equation with the general form of circle to obtain the values of g and f.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
