
The electric field due to charge Q at a distance 10m from it is 900N/C. The magnitude of charge Q is $\left[ {\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {{10}^9}\dfrac{{N{m^2}}}{{{C^2}}}} \right]$
1) ${10^{ - 2}}C$
2) \[{10^{ - 4}}C\]
3) \[{10^{ - 5}}C\]
4) \[{10^{ - 6}}C\]
Answer
557.1k+ views
Hint:Electric field is defined as the electric force per unit charge and the direction of the electric field is taken as the direction of the force that is applied on the positive test charge. The electric field is proportional to the charge and inversely proportional to the distance. The electric field will continue to decrease as a charge is moved further away from the field.
Complete step by step Solution:
Find the magnitude of the charge Q:
$E = \dfrac{{KQ}}{r}$ ;
Here:
E = Electric Field
K = Constant
Q = Charge
r = Distance
We have been given all the values put in the above equation:
$E = \dfrac{{KQ}}{r}$
Write the above equation in terms of Q:
$E = \dfrac{{KQ}}{r}$
\[ \Rightarrow \dfrac{{E \cdot r}}{K} = Q\]
Put in the given values:
\[ \Rightarrow \dfrac{{900 \times 10}}{{9 \times {{10}^9}}} = Q\]
\[ \Rightarrow \dfrac{{100 \times 10}}{{{{10}^9}}} = Q\]
The magnitude of charge is:
\[ \Rightarrow {10^{ - 6}}C = Q\]
Final Answer:Option “4” is correct. Therefore, the magnitude of charge Q is \[{10^{ - 6}}C\].
Note:Here we have been asked about the magnitude of the charge. All the needed values are given to us. Apply the formula of electric field in relation with charge and distance. There has been a long battle between scientists whether light is particle or wave like, light is a form of EM radiation. On a similar basis electric field is considered to be wave like but according to quantum mechanics electric field can be quantized that means electric field just like light consists of discrete parcels, photons, etc.
Complete step by step Solution:
Find the magnitude of the charge Q:
$E = \dfrac{{KQ}}{r}$ ;
Here:
E = Electric Field
K = Constant
Q = Charge
r = Distance
We have been given all the values put in the above equation:
$E = \dfrac{{KQ}}{r}$
Write the above equation in terms of Q:
$E = \dfrac{{KQ}}{r}$
\[ \Rightarrow \dfrac{{E \cdot r}}{K} = Q\]
Put in the given values:
\[ \Rightarrow \dfrac{{900 \times 10}}{{9 \times {{10}^9}}} = Q\]
\[ \Rightarrow \dfrac{{100 \times 10}}{{{{10}^9}}} = Q\]
The magnitude of charge is:
\[ \Rightarrow {10^{ - 6}}C = Q\]
Final Answer:Option “4” is correct. Therefore, the magnitude of charge Q is \[{10^{ - 6}}C\].
Note:Here we have been asked about the magnitude of the charge. All the needed values are given to us. Apply the formula of electric field in relation with charge and distance. There has been a long battle between scientists whether light is particle or wave like, light is a form of EM radiation. On a similar basis electric field is considered to be wave like but according to quantum mechanics electric field can be quantized that means electric field just like light consists of discrete parcels, photons, etc.
Recently Updated Pages
A How benzene is converted to toluene in two steps class 12 chemistry CBSE

Who is known as the father of plant tissue culture class 12 biology CBSE

Differentiate between enantiomer and diastereomer class 12 chemistry CBSE

Why is DNA replication said to be semiconservative class 12 biology CBSE

Mention the causes and effects of phenylketonuria class 12 biology CBSE

P Chloroaniline and anilinium hydrochloride can be class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

