Answer
Verified
410.7k+ views
Hint: Here in this question the direction ratios are given. By using the formula $ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , $ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ and $ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ we can determine the direction cosines of the vector where x, y, and z are the direction ratios of the vector.
Complete step-by-step answer:
Suppose if we have a vector in a plane in the form of $ \overrightarrow {OP} = x\hat i + y\hat j + z\hat k $ , where $ \hat i $ , $ \hat j $ and $ \hat k $ are the unit vectors of x, y and z axis respectively. The numbers which are proportional to the direction cosines are direction ratios. The direction cosine is the cosines of the angles between the vector and the three coordinate axes.
We have formula for direction cosines and it is given as
$ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , $ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ and $ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $
Now we will find the direction cosine along the x axis
$ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
by substituting all the values in l we get
$
l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow l = \cos \alpha = \dfrac{2}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
on simplification we have
$
\Rightarrow l = \cos \alpha = \dfrac{2}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow l = \dfrac{2}{{\sqrt {29} }} \\
$
Now we will find the direction cosine along the y axis
$ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
By substituting all the values in m we get
$
m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow m = \cos \beta = \dfrac{{ - 3}}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
On simplification we have
$
\Rightarrow m = \cos \beta = \dfrac{{ - 3}}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow m = \dfrac{{ - 3}}{{\sqrt {29} }} \\
$
Now we will find the direction cosine along the z axis
$ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
By substituting all the values in n we get
$
n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow n = \cos \gamma = \dfrac{4}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
On simplification we have
$
\Rightarrow n = \cos \gamma = \dfrac{4}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow n = \dfrac{4}{{\sqrt {29} }} \\
$
Hence we obtain the direction cosines from the direction ratios and that are
$ l = \dfrac{2}{{\sqrt {29} }} $ , $ m = \dfrac{{ - 3}}{{\sqrt {29} }} $ and $ n = \dfrac{4}{{\sqrt {29} }} $
Therefore the direction cosines are $ \left( {\dfrac{2}{{\sqrt {29} }},\dfrac{{ - 3}}{{\sqrt {29} }},\dfrac{4}{{\sqrt {29} }}} \right) $
So, the correct answer is “ $ \left( {\dfrac{2}{{\sqrt {29} }},\dfrac{{ - 3}}{{\sqrt {29} }},\dfrac{4}{{\sqrt {29} }}} \right) $ ”.
Note: The direction ratios are proportional direction cosines of the vector. If we know the values of direction ratios of a vector then by applying the formula we can obtain the result. The direction ratios are the coefficient of the vector.
Complete step-by-step answer:
Suppose if we have a vector in a plane in the form of $ \overrightarrow {OP} = x\hat i + y\hat j + z\hat k $ , where $ \hat i $ , $ \hat j $ and $ \hat k $ are the unit vectors of x, y and z axis respectively. The numbers which are proportional to the direction cosines are direction ratios. The direction cosine is the cosines of the angles between the vector and the three coordinate axes.
We have formula for direction cosines and it is given as
$ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , $ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ and $ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $
Now we will find the direction cosine along the x axis
$ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
by substituting all the values in l we get
$
l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow l = \cos \alpha = \dfrac{2}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
on simplification we have
$
\Rightarrow l = \cos \alpha = \dfrac{2}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow l = \dfrac{2}{{\sqrt {29} }} \\
$
Now we will find the direction cosine along the y axis
$ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
By substituting all the values in m we get
$
m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow m = \cos \beta = \dfrac{{ - 3}}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
On simplification we have
$
\Rightarrow m = \cos \beta = \dfrac{{ - 3}}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow m = \dfrac{{ - 3}}{{\sqrt {29} }} \\
$
Now we will find the direction cosine along the z axis
$ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
By substituting all the values in n we get
$
n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow n = \cos \gamma = \dfrac{4}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
On simplification we have
$
\Rightarrow n = \cos \gamma = \dfrac{4}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow n = \dfrac{4}{{\sqrt {29} }} \\
$
Hence we obtain the direction cosines from the direction ratios and that are
$ l = \dfrac{2}{{\sqrt {29} }} $ , $ m = \dfrac{{ - 3}}{{\sqrt {29} }} $ and $ n = \dfrac{4}{{\sqrt {29} }} $
Therefore the direction cosines are $ \left( {\dfrac{2}{{\sqrt {29} }},\dfrac{{ - 3}}{{\sqrt {29} }},\dfrac{4}{{\sqrt {29} }}} \right) $
So, the correct answer is “ $ \left( {\dfrac{2}{{\sqrt {29} }},\dfrac{{ - 3}}{{\sqrt {29} }},\dfrac{4}{{\sqrt {29} }}} \right) $ ”.
Note: The direction ratios are proportional direction cosines of the vector. If we know the values of direction ratios of a vector then by applying the formula we can obtain the result. The direction ratios are the coefficient of the vector.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
What are the monomers and polymers of carbohydrate class 12 chemistry CBSE