The direction ratios of a vector are 2,-3, 4. Find its direction cosines.
Answer
Verified
451.5k+ views
Hint: Here in this question the direction ratios are given. By using the formula $ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , $ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ and $ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ we can determine the direction cosines of the vector where x, y, and z are the direction ratios of the vector.
Complete step-by-step answer:
Suppose if we have a vector in a plane in the form of $ \overrightarrow {OP} = x\hat i + y\hat j + z\hat k $ , where $ \hat i $ , $ \hat j $ and $ \hat k $ are the unit vectors of x, y and z axis respectively. The numbers which are proportional to the direction cosines are direction ratios. The direction cosine is the cosines of the angles between the vector and the three coordinate axes.
We have formula for direction cosines and it is given as
$ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , $ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ and $ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $
Now we will find the direction cosine along the x axis
$ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
by substituting all the values in l we get
$
l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow l = \cos \alpha = \dfrac{2}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
on simplification we have
$
\Rightarrow l = \cos \alpha = \dfrac{2}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow l = \dfrac{2}{{\sqrt {29} }} \\
$
Now we will find the direction cosine along the y axis
$ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
By substituting all the values in m we get
$
m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow m = \cos \beta = \dfrac{{ - 3}}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
On simplification we have
$
\Rightarrow m = \cos \beta = \dfrac{{ - 3}}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow m = \dfrac{{ - 3}}{{\sqrt {29} }} \\
$
Now we will find the direction cosine along the z axis
$ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
By substituting all the values in n we get
$
n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow n = \cos \gamma = \dfrac{4}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
On simplification we have
$
\Rightarrow n = \cos \gamma = \dfrac{4}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow n = \dfrac{4}{{\sqrt {29} }} \\
$
Hence we obtain the direction cosines from the direction ratios and that are
$ l = \dfrac{2}{{\sqrt {29} }} $ , $ m = \dfrac{{ - 3}}{{\sqrt {29} }} $ and $ n = \dfrac{4}{{\sqrt {29} }} $
Therefore the direction cosines are $ \left( {\dfrac{2}{{\sqrt {29} }},\dfrac{{ - 3}}{{\sqrt {29} }},\dfrac{4}{{\sqrt {29} }}} \right) $
So, the correct answer is “ $ \left( {\dfrac{2}{{\sqrt {29} }},\dfrac{{ - 3}}{{\sqrt {29} }},\dfrac{4}{{\sqrt {29} }}} \right) $ ”.
Note: The direction ratios are proportional direction cosines of the vector. If we know the values of direction ratios of a vector then by applying the formula we can obtain the result. The direction ratios are the coefficient of the vector.
Complete step-by-step answer:
Suppose if we have a vector in a plane in the form of $ \overrightarrow {OP} = x\hat i + y\hat j + z\hat k $ , where $ \hat i $ , $ \hat j $ and $ \hat k $ are the unit vectors of x, y and z axis respectively. The numbers which are proportional to the direction cosines are direction ratios. The direction cosine is the cosines of the angles between the vector and the three coordinate axes.
We have formula for direction cosines and it is given as
$ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , $ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ and $ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $
Now we will find the direction cosine along the x axis
$ l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
by substituting all the values in l we get
$
l = \cos \alpha = \dfrac{x}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow l = \cos \alpha = \dfrac{2}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
on simplification we have
$
\Rightarrow l = \cos \alpha = \dfrac{2}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow l = \dfrac{2}{{\sqrt {29} }} \\
$
Now we will find the direction cosine along the y axis
$ m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
By substituting all the values in m we get
$
m = \cos \beta = \dfrac{y}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow m = \cos \beta = \dfrac{{ - 3}}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
On simplification we have
$
\Rightarrow m = \cos \beta = \dfrac{{ - 3}}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow m = \dfrac{{ - 3}}{{\sqrt {29} }} \\
$
Now we will find the direction cosine along the z axis
$ n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} $ , where $ x = 2,y = - 3 $ and $ z = 4 $
By substituting all the values in n we get
$
n = \cos \gamma = \dfrac{z}{{\sqrt {{x^2} + {y^2} + {z^2}} }} \\
\Rightarrow n = \cos \gamma = \dfrac{4}{{\sqrt {{2^2} + {{( - 3)}^2} + {4^2}} }} \\
$
On simplification we have
$
\Rightarrow n = \cos \gamma = \dfrac{4}{{\sqrt {4 + 9 + 16} }} \\
\Rightarrow n = \dfrac{4}{{\sqrt {29} }} \\
$
Hence we obtain the direction cosines from the direction ratios and that are
$ l = \dfrac{2}{{\sqrt {29} }} $ , $ m = \dfrac{{ - 3}}{{\sqrt {29} }} $ and $ n = \dfrac{4}{{\sqrt {29} }} $
Therefore the direction cosines are $ \left( {\dfrac{2}{{\sqrt {29} }},\dfrac{{ - 3}}{{\sqrt {29} }},\dfrac{4}{{\sqrt {29} }}} \right) $
So, the correct answer is “ $ \left( {\dfrac{2}{{\sqrt {29} }},\dfrac{{ - 3}}{{\sqrt {29} }},\dfrac{4}{{\sqrt {29} }}} \right) $ ”.
Note: The direction ratios are proportional direction cosines of the vector. If we know the values of direction ratios of a vector then by applying the formula we can obtain the result. The direction ratios are the coefficient of the vector.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
How much time does it take to bleed after eating p class 12 biology CBSE