
The degree of dissociation of \[PC{l_5}\] (g) obeying the equilibrium, \[PC{l_5}{\text{ }} \rightleftharpoons {\text{ }}PC{l_3} + {\text{ }}C{l_2}\], is approximately related to the pressure at equilibrium by:
A \[\alpha {\text{ }}\infty {\text{ }}P\]
B \[\alpha {\text{ }}\infty \dfrac{1}{{\sqrt P }}\]
C \[\alpha {\text{ }}\infty \dfrac{1}{{{P^2}}}\]
D \[\alpha {\text{ }}\infty \dfrac{1}{{{P^4}}}\]
Answer
508.9k+ views
Hint: At equilibrium the forward and backward reaction rates become the same. As a result, equilibrium constant can be written as the ratio of product side concentration to reactant side concentration.
Complete step by step answer:
For a reversible reaction at a situation when the amount of product formed is equal to the amount of reactant is formed then it is called equilibrium. At equilibrium the amount of product and reactant concentration become constant.
Now for the reaction \[PC{l_5}{\text{ }} \rightleftharpoons {\text{ }}PC{l_3} + {\text{ }}C{l_2}\], let the degree of dissociation of \[PC{l_5}\] is \[{\text{\alpha }}\]. And let the initial mole of \[PC{l_5}\] is 1 mole. Therefore, at equilibrium the number of moles of \[PC{l_5}\] and \[PC{l_3}\] and \[C{l_2}\]are \[1 - \alpha \],\[\alpha \]and \[\alpha \] respectively . P is the total pressure in equilibrium.
At equilibrium the total number of moles is
\[
1 - \alpha + \alpha + \alpha \\
= 1 + \alpha \\
\]
Now at equilibrium the mole fractions of \[PC{l_5}\] and \[PC{l_3}\], \[C{l_2}\]are\[\dfrac{{1 - \alpha }}{{1 + \alpha }}\],\[\dfrac{\alpha }{{1 + \alpha }}\]and \[\dfrac{\alpha }{{1 + \alpha }}\] respectively.
Now according to the Dalton’s law of partial pressure is \[{P_i} = {x_i}P\]
At equilibrium The partial pressures of \[PC{l_5}\] and \[PC{l_3}\] ,\[C{l_2}\]are\[{P_{PC{l_5}}} = \dfrac{{1 - \alpha }}{{1 + \alpha }}P\],\[{P_{PC{l_3}}} = \dfrac{\alpha }{{1 + \alpha }}P\]and \[{P_{C{l_2}}} = \dfrac{\alpha }{{1 + \alpha }}P\] respectively. Where \[{\alpha ^2} < 1\].
There fore the equilibrium constant is,
\[
{K_P} = \dfrac{{\left[ {PC{l_3}} \right]\left[ {C{l_2}} \right]}}{{\left[ {PC{l_5}} \right]}} \\
{K_P} = \dfrac{{\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}P} \right]}} \\
{K_P} = \dfrac{{{{\left[ {\dfrac{\alpha }{{1 + \alpha }}} \right]}^2}{{\left[ P \right]}^2}}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}} \right]P}} \\
\]
\[
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - \alpha )(1 + \alpha )}} \\
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - {\alpha ^2})}} \\
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1)}} \\
{\alpha ^2} = \dfrac{{{K_P}}}{P} \\
\alpha = \sqrt {\dfrac{{{K_P}}}{P}} \\
\alpha \infty \dfrac{1}{{\sqrt P }} \\
\]
So, the correct option is B.
Note:
For a reaction, \[A + 2B \rightleftharpoons 2C\] let, the rate constant of forward reaction is \[{K_f}\] and the rate constant for backward reaction is \[\;{k_b}\]. therefore, the rates of forward and backward reactions are,
\[{R_f} = {k_f}\left[ A \right]{\left[ B \right]^2}\]and \[{\text{ }}{R_b} = {k_b}{\left[ C \right]^2}\]respectively. Now, at equilibrium the forward and backward reaction rates become the same. Therefore, the equilibrium constant is ,
\[
{R_f} = {\text{ }}{R_b} \\
or,{\text{ }}{k_f}\left[ A \right]{\left[ B \right]^2} = {k_b}{\left[ C \right]^2} \\
or,\dfrac{{{k_f}}}{{{k_b}}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\
{k_{eq}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\
\]
Complete step by step answer:
For a reversible reaction at a situation when the amount of product formed is equal to the amount of reactant is formed then it is called equilibrium. At equilibrium the amount of product and reactant concentration become constant.
Now for the reaction \[PC{l_5}{\text{ }} \rightleftharpoons {\text{ }}PC{l_3} + {\text{ }}C{l_2}\], let the degree of dissociation of \[PC{l_5}\] is \[{\text{\alpha }}\]. And let the initial mole of \[PC{l_5}\] is 1 mole. Therefore, at equilibrium the number of moles of \[PC{l_5}\] and \[PC{l_3}\] and \[C{l_2}\]are \[1 - \alpha \],\[\alpha \]and \[\alpha \] respectively . P is the total pressure in equilibrium.
At equilibrium the total number of moles is
\[
1 - \alpha + \alpha + \alpha \\
= 1 + \alpha \\
\]
Now at equilibrium the mole fractions of \[PC{l_5}\] and \[PC{l_3}\], \[C{l_2}\]are\[\dfrac{{1 - \alpha }}{{1 + \alpha }}\],\[\dfrac{\alpha }{{1 + \alpha }}\]and \[\dfrac{\alpha }{{1 + \alpha }}\] respectively.
Now according to the Dalton’s law of partial pressure is \[{P_i} = {x_i}P\]
At equilibrium The partial pressures of \[PC{l_5}\] and \[PC{l_3}\] ,\[C{l_2}\]are\[{P_{PC{l_5}}} = \dfrac{{1 - \alpha }}{{1 + \alpha }}P\],\[{P_{PC{l_3}}} = \dfrac{\alpha }{{1 + \alpha }}P\]and \[{P_{C{l_2}}} = \dfrac{\alpha }{{1 + \alpha }}P\] respectively. Where \[{\alpha ^2} < 1\].
There fore the equilibrium constant is,
\[
{K_P} = \dfrac{{\left[ {PC{l_3}} \right]\left[ {C{l_2}} \right]}}{{\left[ {PC{l_5}} \right]}} \\
{K_P} = \dfrac{{\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}P} \right]}} \\
{K_P} = \dfrac{{{{\left[ {\dfrac{\alpha }{{1 + \alpha }}} \right]}^2}{{\left[ P \right]}^2}}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}} \right]P}} \\
\]
\[
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - \alpha )(1 + \alpha )}} \\
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - {\alpha ^2})}} \\
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1)}} \\
{\alpha ^2} = \dfrac{{{K_P}}}{P} \\
\alpha = \sqrt {\dfrac{{{K_P}}}{P}} \\
\alpha \infty \dfrac{1}{{\sqrt P }} \\
\]
So, the correct option is B.
Note:
For a reaction, \[A + 2B \rightleftharpoons 2C\] let, the rate constant of forward reaction is \[{K_f}\] and the rate constant for backward reaction is \[\;{k_b}\]. therefore, the rates of forward and backward reactions are,
\[{R_f} = {k_f}\left[ A \right]{\left[ B \right]^2}\]and \[{\text{ }}{R_b} = {k_b}{\left[ C \right]^2}\]respectively. Now, at equilibrium the forward and backward reaction rates become the same. Therefore, the equilibrium constant is ,
\[
{R_f} = {\text{ }}{R_b} \\
or,{\text{ }}{k_f}\left[ A \right]{\left[ B \right]^2} = {k_b}{\left[ C \right]^2} \\
or,\dfrac{{{k_f}}}{{{k_b}}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\
{k_{eq}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\
\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

