
The degree of dissociation of \[PC{l_5}\] (g) obeying the equilibrium, \[PC{l_5}{\text{ }} \rightleftharpoons {\text{ }}PC{l_3} + {\text{ }}C{l_2}\], is approximately related to the pressure at equilibrium by:
A \[\alpha {\text{ }}\infty {\text{ }}P\]
B \[\alpha {\text{ }}\infty \dfrac{1}{{\sqrt P }}\]
C \[\alpha {\text{ }}\infty \dfrac{1}{{{P^2}}}\]
D \[\alpha {\text{ }}\infty \dfrac{1}{{{P^4}}}\]
Answer
519.7k+ views
Hint: At equilibrium the forward and backward reaction rates become the same. As a result, equilibrium constant can be written as the ratio of product side concentration to reactant side concentration.
Complete step by step answer:
For a reversible reaction at a situation when the amount of product formed is equal to the amount of reactant is formed then it is called equilibrium. At equilibrium the amount of product and reactant concentration become constant.
Now for the reaction \[PC{l_5}{\text{ }} \rightleftharpoons {\text{ }}PC{l_3} + {\text{ }}C{l_2}\], let the degree of dissociation of \[PC{l_5}\] is \[{\text{\alpha }}\]. And let the initial mole of \[PC{l_5}\] is 1 mole. Therefore, at equilibrium the number of moles of \[PC{l_5}\] and \[PC{l_3}\] and \[C{l_2}\]are \[1 - \alpha \],\[\alpha \]and \[\alpha \] respectively . P is the total pressure in equilibrium.
At equilibrium the total number of moles is
\[
1 - \alpha + \alpha + \alpha \\
= 1 + \alpha \\
\]
Now at equilibrium the mole fractions of \[PC{l_5}\] and \[PC{l_3}\], \[C{l_2}\]are\[\dfrac{{1 - \alpha }}{{1 + \alpha }}\],\[\dfrac{\alpha }{{1 + \alpha }}\]and \[\dfrac{\alpha }{{1 + \alpha }}\] respectively.
Now according to the Dalton’s law of partial pressure is \[{P_i} = {x_i}P\]
At equilibrium The partial pressures of \[PC{l_5}\] and \[PC{l_3}\] ,\[C{l_2}\]are\[{P_{PC{l_5}}} = \dfrac{{1 - \alpha }}{{1 + \alpha }}P\],\[{P_{PC{l_3}}} = \dfrac{\alpha }{{1 + \alpha }}P\]and \[{P_{C{l_2}}} = \dfrac{\alpha }{{1 + \alpha }}P\] respectively. Where \[{\alpha ^2} < 1\].
There fore the equilibrium constant is,
\[
{K_P} = \dfrac{{\left[ {PC{l_3}} \right]\left[ {C{l_2}} \right]}}{{\left[ {PC{l_5}} \right]}} \\
{K_P} = \dfrac{{\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}P} \right]}} \\
{K_P} = \dfrac{{{{\left[ {\dfrac{\alpha }{{1 + \alpha }}} \right]}^2}{{\left[ P \right]}^2}}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}} \right]P}} \\
\]
\[
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - \alpha )(1 + \alpha )}} \\
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - {\alpha ^2})}} \\
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1)}} \\
{\alpha ^2} = \dfrac{{{K_P}}}{P} \\
\alpha = \sqrt {\dfrac{{{K_P}}}{P}} \\
\alpha \infty \dfrac{1}{{\sqrt P }} \\
\]
So, the correct option is B.
Note:
For a reaction, \[A + 2B \rightleftharpoons 2C\] let, the rate constant of forward reaction is \[{K_f}\] and the rate constant for backward reaction is \[\;{k_b}\]. therefore, the rates of forward and backward reactions are,
\[{R_f} = {k_f}\left[ A \right]{\left[ B \right]^2}\]and \[{\text{ }}{R_b} = {k_b}{\left[ C \right]^2}\]respectively. Now, at equilibrium the forward and backward reaction rates become the same. Therefore, the equilibrium constant is ,
\[
{R_f} = {\text{ }}{R_b} \\
or,{\text{ }}{k_f}\left[ A \right]{\left[ B \right]^2} = {k_b}{\left[ C \right]^2} \\
or,\dfrac{{{k_f}}}{{{k_b}}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\
{k_{eq}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\
\]
Complete step by step answer:
For a reversible reaction at a situation when the amount of product formed is equal to the amount of reactant is formed then it is called equilibrium. At equilibrium the amount of product and reactant concentration become constant.
Now for the reaction \[PC{l_5}{\text{ }} \rightleftharpoons {\text{ }}PC{l_3} + {\text{ }}C{l_2}\], let the degree of dissociation of \[PC{l_5}\] is \[{\text{\alpha }}\]. And let the initial mole of \[PC{l_5}\] is 1 mole. Therefore, at equilibrium the number of moles of \[PC{l_5}\] and \[PC{l_3}\] and \[C{l_2}\]are \[1 - \alpha \],\[\alpha \]and \[\alpha \] respectively . P is the total pressure in equilibrium.
At equilibrium the total number of moles is
\[
1 - \alpha + \alpha + \alpha \\
= 1 + \alpha \\
\]
Now at equilibrium the mole fractions of \[PC{l_5}\] and \[PC{l_3}\], \[C{l_2}\]are\[\dfrac{{1 - \alpha }}{{1 + \alpha }}\],\[\dfrac{\alpha }{{1 + \alpha }}\]and \[\dfrac{\alpha }{{1 + \alpha }}\] respectively.
Now according to the Dalton’s law of partial pressure is \[{P_i} = {x_i}P\]
At equilibrium The partial pressures of \[PC{l_5}\] and \[PC{l_3}\] ,\[C{l_2}\]are\[{P_{PC{l_5}}} = \dfrac{{1 - \alpha }}{{1 + \alpha }}P\],\[{P_{PC{l_3}}} = \dfrac{\alpha }{{1 + \alpha }}P\]and \[{P_{C{l_2}}} = \dfrac{\alpha }{{1 + \alpha }}P\] respectively. Where \[{\alpha ^2} < 1\].
There fore the equilibrium constant is,
\[
{K_P} = \dfrac{{\left[ {PC{l_3}} \right]\left[ {C{l_2}} \right]}}{{\left[ {PC{l_5}} \right]}} \\
{K_P} = \dfrac{{\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}P} \right]}} \\
{K_P} = \dfrac{{{{\left[ {\dfrac{\alpha }{{1 + \alpha }}} \right]}^2}{{\left[ P \right]}^2}}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}} \right]P}} \\
\]
\[
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - \alpha )(1 + \alpha )}} \\
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - {\alpha ^2})}} \\
{K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1)}} \\
{\alpha ^2} = \dfrac{{{K_P}}}{P} \\
\alpha = \sqrt {\dfrac{{{K_P}}}{P}} \\
\alpha \infty \dfrac{1}{{\sqrt P }} \\
\]
So, the correct option is B.
Note:
For a reaction, \[A + 2B \rightleftharpoons 2C\] let, the rate constant of forward reaction is \[{K_f}\] and the rate constant for backward reaction is \[\;{k_b}\]. therefore, the rates of forward and backward reactions are,
\[{R_f} = {k_f}\left[ A \right]{\left[ B \right]^2}\]and \[{\text{ }}{R_b} = {k_b}{\left[ C \right]^2}\]respectively. Now, at equilibrium the forward and backward reaction rates become the same. Therefore, the equilibrium constant is ,
\[
{R_f} = {\text{ }}{R_b} \\
or,{\text{ }}{k_f}\left[ A \right]{\left[ B \right]^2} = {k_b}{\left[ C \right]^2} \\
or,\dfrac{{{k_f}}}{{{k_b}}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\
{k_{eq}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\
\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

