
The bond dissociation energy of $CH$ in \[C{H_4}\] from the equation
$C(g) + 4H(g) \to C{H_4}(g)$ , $\Delta H = - 397.8kcal$
A) +99.45kcal
B) -99.45kcal
C) +397.8kcal
D) +198.9kcal
Answer
568.8k+ views
Hint:Carbon and Hydrogen are in their elementary states so their enthalpies will be zero (0). Bond dissociation energy measures the strength of bond. Or we can say that bond dissociation energy is the energy required to dissociate the bond.
Complete answer:
Given balanced equation is $C(g) + 4H(g) \to C{H_4}(g)$ , $\Delta H = - 397.8kcal$
Since Carbon and Hydrogen in this reaction are in their elementary state so their enthalpies will be “0”
And enthalpy for the reaction is $\Delta H = - 397.8kcal$
So as enthalpies of carbon and hydrogen are zero therefore enthalpy of \[C{H_4}\]= $397.8kcal$
And since there are $4CH$ bonds in \[C{H_4}\]
Therefore it can be written as, $\Delta H$ = heat released in formation of $4CH$ bonds in \[C{H_4}\]
$\Delta H$=$4 \times $ bond dissociation energy of$CH$ bond in \[C{H_4}\]
$397.8kcal$ = $4 \times $bond dissociation energy of $CH$ bond in \[C{H_4}\]
Bond Dissociation energy of $CH$ bond in \[C{H_4}\]=$397.8 \div 4$.
Therefore, Bond Dissociation energy of $CH$ bond in \[C{H_4}\]= $+99.45kcal$
Hence, the correct answer is option ‘A’.
Note:Bond dissociation energy is one which measures strength of bond. Elements or compounds which are in their elementary state have enthalpies zero as in this question enthalpies of carbon and hydrogen is zero because they are present in their elemental states.
Complete answer:
Given balanced equation is $C(g) + 4H(g) \to C{H_4}(g)$ , $\Delta H = - 397.8kcal$
Since Carbon and Hydrogen in this reaction are in their elementary state so their enthalpies will be “0”
And enthalpy for the reaction is $\Delta H = - 397.8kcal$
So as enthalpies of carbon and hydrogen are zero therefore enthalpy of \[C{H_4}\]= $397.8kcal$
And since there are $4CH$ bonds in \[C{H_4}\]
Therefore it can be written as, $\Delta H$ = heat released in formation of $4CH$ bonds in \[C{H_4}\]
$\Delta H$=$4 \times $ bond dissociation energy of$CH$ bond in \[C{H_4}\]
$397.8kcal$ = $4 \times $bond dissociation energy of $CH$ bond in \[C{H_4}\]
Bond Dissociation energy of $CH$ bond in \[C{H_4}\]=$397.8 \div 4$.
Therefore, Bond Dissociation energy of $CH$ bond in \[C{H_4}\]= $+99.45kcal$
Hence, the correct answer is option ‘A’.
Note:Bond dissociation energy is one which measures strength of bond. Elements or compounds which are in their elementary state have enthalpies zero as in this question enthalpies of carbon and hydrogen is zero because they are present in their elemental states.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

