
The area of triangle whose vertices are (1, 2, 3), (2, 5, −1) and (−1, 1, 2) is
150 sq. units
145 sq. units
$\dfrac{\sqrt{155}}{2}$ sq. units
$\dfrac{155}{2}$ sq. units
Answer
604.2k+ views
Hint: All three vertices of the triangle are given. We have to find the vector AB and AC which represents the side vectors. Using the concept of cross product, we have to find cross product of the vector AB and AC. By using the formula of area of triangle, we can simply find the area of triangle ABC. The formula of area of triangle is given below:
Area of triangle $=\dfrac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|$
Complete step-by-step solution -
Given: The vertices of the triangle are:
A (1, 2, 3), B (2, 5, -1) and C (-1, 1, 2)
Consider the origin to be at (0, 0). Now, $\overrightarrow{AB}$ is the difference of $\overrightarrow{OA}$ from $\overrightarrow{OB}$.
\[\begin{align}
& \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} \\
& \overrightarrow{AB}=(2-1)\widehat{i}+(5-2)\widehat{j}+(-1-3)\widehat{k} \\
& \overrightarrow{AB}=\widehat{i}+3\widehat{j}-4\widehat{k} \\
\end{align}\]
Similarly, the $\overrightarrow{AC}$ is the difference of $\overrightarrow{OA}$ from $\overrightarrow{OC}$
\[\begin{align}
& \overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA} \\
& \overrightarrow{AC}=\left( -1-1 \right)\widehat{i}+\left( 1-2 \right)\widehat{j}+\left( 2-3 \right)\widehat{k} \\
& \overrightarrow{AC}=-2\widehat{i}-\widehat{j}-\widehat{k} \\
\end{align}\]
Then, the cross product of $\overrightarrow{AB}$ and $\overrightarrow{AC}$ is:
\[\begin{align}
& \overrightarrow{AB}\times \overrightarrow{AC}=\left| \begin{matrix}
i & j & k \\
1 & 3 & -4 \\
-2 & -1 & -1 \\
\end{matrix} \right| \\
& \overrightarrow{AB}\times \overrightarrow{AC}=i\left( 3\times \left( -1 \right)-\left( -4 \right)\times \left( -1 \right) \right)-j\left( 1\times \left( -1 \right)-\left( -4 \right)\times \left( -2 \right) \right)+k\left( 1\times \left( -1 \right)-\left( 3 \right)\times \left( -2 \right) \right) \\
& \overrightarrow{AB}\times \overrightarrow{AC}=-7i+9j+5k \\
\end{align}\]
The magnitude of a resultant vector \[\overrightarrow{A}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], can be expanded as:
$\left| \overrightarrow{A} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Now, by using the above-mentioned expression, the magnitude of both the vectors,
$\begin{align}
& \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|=\sqrt{{{\left( -7 \right)}^{2}}+{{\left( 9 \right)}^{2}}+{{\left( 5 \right)}^{2}}} \\
& \overrightarrow{AB}\times \overrightarrow{AC}=\sqrt{49+81+25} \\
& \overrightarrow{AB}\times \overrightarrow{AC}=\sqrt{155} \\
\end{align}$
Now, area of the triangle ABC $=\dfrac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|=\dfrac{1}{2}\times \sqrt{155}$
Area of the triangle ABC $=\dfrac{\sqrt{155}}{2}$sq. units.
Hence, the area of the triangle ABC is $\dfrac{\sqrt{155}}{2}$ sq. units.
Therefore, option (c) is correct.
Note: The key concept involved in solving this problem is the expression of sides in the form of vectors. Students must be careful while calculating the cross product and must be aware of the intricacies of signs involved in cross product. General mistake is done in the calculation of cross product.
Area of triangle $=\dfrac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|$
Complete step-by-step solution -
Given: The vertices of the triangle are:
A (1, 2, 3), B (2, 5, -1) and C (-1, 1, 2)
Consider the origin to be at (0, 0). Now, $\overrightarrow{AB}$ is the difference of $\overrightarrow{OA}$ from $\overrightarrow{OB}$.
\[\begin{align}
& \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} \\
& \overrightarrow{AB}=(2-1)\widehat{i}+(5-2)\widehat{j}+(-1-3)\widehat{k} \\
& \overrightarrow{AB}=\widehat{i}+3\widehat{j}-4\widehat{k} \\
\end{align}\]
Similarly, the $\overrightarrow{AC}$ is the difference of $\overrightarrow{OA}$ from $\overrightarrow{OC}$
\[\begin{align}
& \overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA} \\
& \overrightarrow{AC}=\left( -1-1 \right)\widehat{i}+\left( 1-2 \right)\widehat{j}+\left( 2-3 \right)\widehat{k} \\
& \overrightarrow{AC}=-2\widehat{i}-\widehat{j}-\widehat{k} \\
\end{align}\]
Then, the cross product of $\overrightarrow{AB}$ and $\overrightarrow{AC}$ is:
\[\begin{align}
& \overrightarrow{AB}\times \overrightarrow{AC}=\left| \begin{matrix}
i & j & k \\
1 & 3 & -4 \\
-2 & -1 & -1 \\
\end{matrix} \right| \\
& \overrightarrow{AB}\times \overrightarrow{AC}=i\left( 3\times \left( -1 \right)-\left( -4 \right)\times \left( -1 \right) \right)-j\left( 1\times \left( -1 \right)-\left( -4 \right)\times \left( -2 \right) \right)+k\left( 1\times \left( -1 \right)-\left( 3 \right)\times \left( -2 \right) \right) \\
& \overrightarrow{AB}\times \overrightarrow{AC}=-7i+9j+5k \\
\end{align}\]
The magnitude of a resultant vector \[\overrightarrow{A}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], can be expanded as:
$\left| \overrightarrow{A} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Now, by using the above-mentioned expression, the magnitude of both the vectors,
$\begin{align}
& \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|=\sqrt{{{\left( -7 \right)}^{2}}+{{\left( 9 \right)}^{2}}+{{\left( 5 \right)}^{2}}} \\
& \overrightarrow{AB}\times \overrightarrow{AC}=\sqrt{49+81+25} \\
& \overrightarrow{AB}\times \overrightarrow{AC}=\sqrt{155} \\
\end{align}$
Now, area of the triangle ABC $=\dfrac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|=\dfrac{1}{2}\times \sqrt{155}$
Area of the triangle ABC $=\dfrac{\sqrt{155}}{2}$sq. units.
Hence, the area of the triangle ABC is $\dfrac{\sqrt{155}}{2}$ sq. units.
Therefore, option (c) is correct.
Note: The key concept involved in solving this problem is the expression of sides in the form of vectors. Students must be careful while calculating the cross product and must be aware of the intricacies of signs involved in cross product. General mistake is done in the calculation of cross product.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

