
The area of triangle whose vertices are (1, 2, 3), (2, 5, −1) and (−1, 1, 2) is
150 sq. units
145 sq. units
sq. units
sq. units
Answer
528.9k+ views
1 likes
Hint: All three vertices of the triangle are given. We have to find the vector AB and AC which represents the side vectors. Using the concept of cross product, we have to find cross product of the vector AB and AC. By using the formula of area of triangle, we can simply find the area of triangle ABC. The formula of area of triangle is given below:
Area of triangle
Complete step-by-step solution -
Given: The vertices of the triangle are:
A (1, 2, 3), B (2, 5, -1) and C (-1, 1, 2)
Consider the origin to be at (0, 0). Now, is the difference of from .
Similarly, the is the difference of from
Then, the cross product of and is:
The magnitude of a resultant vector , can be expanded as:
Now, by using the above-mentioned expression, the magnitude of both the vectors,
Now, area of the triangle ABC
Area of the triangle ABC sq. units.
Hence, the area of the triangle ABC is sq. units.
Therefore, option (c) is correct.
Note: The key concept involved in solving this problem is the expression of sides in the form of vectors. Students must be careful while calculating the cross product and must be aware of the intricacies of signs involved in cross product. General mistake is done in the calculation of cross product.
Area of triangle
Complete step-by-step solution -

Given: The vertices of the triangle are:
A (1, 2, 3), B (2, 5, -1) and C (-1, 1, 2)
Consider the origin to be at (0, 0). Now,
Similarly, the
Then, the cross product of
The magnitude of a resultant vector
Now, by using the above-mentioned expression, the magnitude of both the vectors,
Now, area of the triangle ABC
Area of the triangle ABC
Hence, the area of the triangle ABC is
Therefore, option (c) is correct.
Note: The key concept involved in solving this problem is the expression of sides in the form of vectors. Students must be careful while calculating the cross product and must be aware of the intricacies of signs involved in cross product. General mistake is done in the calculation of cross product.
Latest Vedantu courses for you
Grade 9 | CBSE | SCHOOL | English
Vedantu 9 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹37,300 per year
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Why should a magnesium ribbon be cleaned before burning class 12 chemistry CBSE

A renewable exhaustible natural resources is A Coal class 12 biology CBSE

Megasporangium is equivalent to a Embryo sac b Fruit class 12 biology CBSE

What is Zeises salt and ferrocene Explain with str class 12 chemistry CBSE

How to calculate power in series and parallel circ class 12 physics CBSE
