
The area of triangle whose vertices are (1, 2, 3), (2, 5, −1) and (−1, 1, 2) is
150 sq. units
145 sq. units
$\dfrac{\sqrt{155}}{2}$ sq. units
$\dfrac{155}{2}$ sq. units
Answer
516.9k+ views
Hint: All three vertices of the triangle are given. We have to find the vector AB and AC which represents the side vectors. Using the concept of cross product, we have to find cross product of the vector AB and AC. By using the formula of area of triangle, we can simply find the area of triangle ABC. The formula of area of triangle is given below:
Area of triangle $=\dfrac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|$
Complete step-by-step solution -
Given: The vertices of the triangle are:
A (1, 2, 3), B (2, 5, -1) and C (-1, 1, 2)
Consider the origin to be at (0, 0). Now, $\overrightarrow{AB}$ is the difference of $\overrightarrow{OA}$ from $\overrightarrow{OB}$.
\[\begin{align}
& \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} \\
& \overrightarrow{AB}=(2-1)\widehat{i}+(5-2)\widehat{j}+(-1-3)\widehat{k} \\
& \overrightarrow{AB}=\widehat{i}+3\widehat{j}-4\widehat{k} \\
\end{align}\]
Similarly, the $\overrightarrow{AC}$ is the difference of $\overrightarrow{OA}$ from $\overrightarrow{OC}$
\[\begin{align}
& \overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA} \\
& \overrightarrow{AC}=\left( -1-1 \right)\widehat{i}+\left( 1-2 \right)\widehat{j}+\left( 2-3 \right)\widehat{k} \\
& \overrightarrow{AC}=-2\widehat{i}-\widehat{j}-\widehat{k} \\
\end{align}\]
Then, the cross product of $\overrightarrow{AB}$ and $\overrightarrow{AC}$ is:
\[\begin{align}
& \overrightarrow{AB}\times \overrightarrow{AC}=\left| \begin{matrix}
i & j & k \\
1 & 3 & -4 \\
-2 & -1 & -1 \\
\end{matrix} \right| \\
& \overrightarrow{AB}\times \overrightarrow{AC}=i\left( 3\times \left( -1 \right)-\left( -4 \right)\times \left( -1 \right) \right)-j\left( 1\times \left( -1 \right)-\left( -4 \right)\times \left( -2 \right) \right)+k\left( 1\times \left( -1 \right)-\left( 3 \right)\times \left( -2 \right) \right) \\
& \overrightarrow{AB}\times \overrightarrow{AC}=-7i+9j+5k \\
\end{align}\]
The magnitude of a resultant vector \[\overrightarrow{A}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], can be expanded as:
$\left| \overrightarrow{A} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Now, by using the above-mentioned expression, the magnitude of both the vectors,
$\begin{align}
& \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|=\sqrt{{{\left( -7 \right)}^{2}}+{{\left( 9 \right)}^{2}}+{{\left( 5 \right)}^{2}}} \\
& \overrightarrow{AB}\times \overrightarrow{AC}=\sqrt{49+81+25} \\
& \overrightarrow{AB}\times \overrightarrow{AC}=\sqrt{155} \\
\end{align}$
Now, area of the triangle ABC $=\dfrac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|=\dfrac{1}{2}\times \sqrt{155}$
Area of the triangle ABC $=\dfrac{\sqrt{155}}{2}$sq. units.
Hence, the area of the triangle ABC is $\dfrac{\sqrt{155}}{2}$ sq. units.
Therefore, option (c) is correct.
Note: The key concept involved in solving this problem is the expression of sides in the form of vectors. Students must be careful while calculating the cross product and must be aware of the intricacies of signs involved in cross product. General mistake is done in the calculation of cross product.
Area of triangle $=\dfrac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|$
Complete step-by-step solution -

Given: The vertices of the triangle are:
A (1, 2, 3), B (2, 5, -1) and C (-1, 1, 2)
Consider the origin to be at (0, 0). Now, $\overrightarrow{AB}$ is the difference of $\overrightarrow{OA}$ from $\overrightarrow{OB}$.
\[\begin{align}
& \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} \\
& \overrightarrow{AB}=(2-1)\widehat{i}+(5-2)\widehat{j}+(-1-3)\widehat{k} \\
& \overrightarrow{AB}=\widehat{i}+3\widehat{j}-4\widehat{k} \\
\end{align}\]
Similarly, the $\overrightarrow{AC}$ is the difference of $\overrightarrow{OA}$ from $\overrightarrow{OC}$
\[\begin{align}
& \overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA} \\
& \overrightarrow{AC}=\left( -1-1 \right)\widehat{i}+\left( 1-2 \right)\widehat{j}+\left( 2-3 \right)\widehat{k} \\
& \overrightarrow{AC}=-2\widehat{i}-\widehat{j}-\widehat{k} \\
\end{align}\]
Then, the cross product of $\overrightarrow{AB}$ and $\overrightarrow{AC}$ is:
\[\begin{align}
& \overrightarrow{AB}\times \overrightarrow{AC}=\left| \begin{matrix}
i & j & k \\
1 & 3 & -4 \\
-2 & -1 & -1 \\
\end{matrix} \right| \\
& \overrightarrow{AB}\times \overrightarrow{AC}=i\left( 3\times \left( -1 \right)-\left( -4 \right)\times \left( -1 \right) \right)-j\left( 1\times \left( -1 \right)-\left( -4 \right)\times \left( -2 \right) \right)+k\left( 1\times \left( -1 \right)-\left( 3 \right)\times \left( -2 \right) \right) \\
& \overrightarrow{AB}\times \overrightarrow{AC}=-7i+9j+5k \\
\end{align}\]
The magnitude of a resultant vector \[\overrightarrow{A}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], can be expanded as:
$\left| \overrightarrow{A} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Now, by using the above-mentioned expression, the magnitude of both the vectors,
$\begin{align}
& \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|=\sqrt{{{\left( -7 \right)}^{2}}+{{\left( 9 \right)}^{2}}+{{\left( 5 \right)}^{2}}} \\
& \overrightarrow{AB}\times \overrightarrow{AC}=\sqrt{49+81+25} \\
& \overrightarrow{AB}\times \overrightarrow{AC}=\sqrt{155} \\
\end{align}$
Now, area of the triangle ABC $=\dfrac{1}{2}\times \left| \overrightarrow{AB}\times \overrightarrow{AC} \right|=\dfrac{1}{2}\times \sqrt{155}$
Area of the triangle ABC $=\dfrac{\sqrt{155}}{2}$sq. units.
Hence, the area of the triangle ABC is $\dfrac{\sqrt{155}}{2}$ sq. units.
Therefore, option (c) is correct.
Note: The key concept involved in solving this problem is the expression of sides in the form of vectors. Students must be careful while calculating the cross product and must be aware of the intricacies of signs involved in cross product. General mistake is done in the calculation of cross product.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
