
The area of the triangle with vertices $A\left( 3,7 \right),B\left( -5,2 \right),$ and $C\left( 2,5 \right)$ is denoted by $\Delta$ . If ${{\Delta }_{A}},{{\Delta }_{B}},{{\Delta }_{C}}$ denote the area of the triangles with vertices $OBC,AOC\;$ and $ABO\;$ respectively, $O$ being the origin, then
A. ${{\Delta }_{A}}+{{\Delta }_{B}}=\Delta +{{\Delta }_{C}}$
B. ${{\Delta }_{A}}+{{\Delta }_{B}}={{\Delta }_{C}}-\Delta$
C. ${{\Delta }_{A}}+{{\Delta }_{B}}=2{{\Delta }_{C}}$
D. ${{\Delta }_{A}}+{{\Delta }_{B}}+{{\Delta }_{C}}=2\Delta$
Answer
533.7k+ views
Hint: We need to find the area of all the triangles given in the question. Firstly, we need to find the values of $\Delta ,{{\Delta }_{A}},{{\Delta }_{B}},{{\Delta }_{C}}$ using the area of the triangle formula. Then, we need to find the relationship between the areas to get the desired result.
Complete step by step solution:
We are given the vertices of the triangle and need to find the area of the triangles. We will be solving the given question using the area of the triangle formula.
The area of the triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right)$ , $\left( {{x}_{2}},{{y}_{2}} \right)$ and $\left( {{x}_{3}},{{y}_{3}} \right)$ is given by $\alpha$ .
$\Rightarrow \alpha =\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow \alpha =\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|$
The area of the triangle with vertices $\left( 3,7 \right),\left( -5,2 \right),$ and $\left( 2,5 \right)$ is given by $\Delta$ .
Find the value of $\Delta$ using the above formula, we get,
$\Rightarrow \Delta =\dfrac{1}{2}\left| \begin{matrix}
3 & 7 & 1 \\
-5 & 2 & 1 \\
2 & 5 & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow \Delta =\dfrac{1}{2}\left| 3\left( 2-5 \right)-7\left( \left( -5 \right)-2 \right)+1\left( \left( -25 \right)-4 \right) \right|$
Simplifying the above equation, we get,
$\Rightarrow \Delta =\dfrac{1}{2}\left| 3\left( -3 \right)-7\left( -7 \right)+1\left( -29 \right) \right|$
Evaluating the equation further,
$\Rightarrow \Delta =\dfrac{1}{2}\left| -9+49-29 \right|$
$\therefore \Delta =\dfrac{11}{2}$
The area of the triangle with vertices $\left( 0,0 \right),\left( -5,2 \right),$ and $\left( 2,5 \right)$ is given by ${{\Delta }_{A}}$
Find the value of ${{\Delta }_{A}}$ using the above formula, we get,
$\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| \begin{matrix}
0 & 0 & 1 \\
-5 & 2 & 1 \\
2 & 5 & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| 0\left( 2-5 \right)-0\left( \left( -5 \right)-2 \right)+1\left( \left( -25 \right)-4 \right) \right|$
Simplifying the above equation, we get,
$\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| \left( \left( -25 \right)-4 \right) \right|$
$\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| -29 \right|$
$\therefore {{\Delta }_{A}}=\dfrac{29}{2}$
The area of the triangle with vertices $\left( 3,7 \right),\left( 0,0 \right),$ and $\left( 2,5 \right)$ is given by ${{\Delta }_{B}}$
Find the value of ${{\Delta }_{B}}$ using the above formula, we get,
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| \begin{matrix}
3 & 7 & 1 \\
0 & 0 & 1 \\
2 & 5 & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| 3\left( 0-5 \right)-7\left( 0-2 \right)+1\left( 0-0 \right) \right|$
Simplifying the above equation, we get,
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| 3\left( -5 \right)-7\left( -2 \right)+0 \right|$
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| -15+14 \right|$
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| -1 \right|$
$\therefore {{\Delta }_{B}}=\dfrac{1}{2}$
The area of the triangle with vertices $\left( 3,7 \right),\left( -5,2 \right),$ and $\left( 0,0 \right)$ is given by ${{\Delta }_{C}}$
$\Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| \begin{matrix}
3 & 7 & 1 \\
-5 & 2 & 1 \\
0 & 0 & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| 3\left( 2-0 \right)-7\left( -5-0 \right)+1\left( 0-0 \right) \right|$
Simplifying the above equation, we get,
$\Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| 6+35+1 \right|$
$\therefore {{\Delta }_{C}}=\dfrac{41}{2}$
From the above,
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{29}{2}+\dfrac{1}{2}+\dfrac{11}{2}$
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{29+1+11}{2}$
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{41}{2}$
We know that ${{\Delta }_{C}}=\dfrac{41}{2}$ . Substituting the same, we get,
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta ={{\Delta }_{C}}$
Moving the term $\Delta$ to the other side of the equation, we get,
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}={{\Delta }_{C}}-\Delta$
So, the correct answer is “Option B”.
Note: We need to keep in mind that the correct formula has to be applied and the values substituted should be correct while solving these questions. The result of the given question can be cross-checked using the equation
${{\Delta }_{A}}+{{\Delta }_{B}}={{\Delta }_{C}}-\Delta$
LHS:
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}$
$\Rightarrow \dfrac{29}{2}+\dfrac{1}{2}$
$\Rightarrow \dfrac{30}{2}$
$\Rightarrow 15$
RHS:
$\Rightarrow {{\Delta }_{C}}-\Delta$
$\Rightarrow \dfrac{41}{2}-\dfrac{11}{2}$
$\Rightarrow \dfrac{30}{2}$
$\Rightarrow 15$
LHS $=\;$ RHS
The result attained is correct.
Complete step by step solution:
We are given the vertices of the triangle and need to find the area of the triangles. We will be solving the given question using the area of the triangle formula.
The area of the triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right)$ , $\left( {{x}_{2}},{{y}_{2}} \right)$ and $\left( {{x}_{3}},{{y}_{3}} \right)$ is given by $\alpha$ .
$\Rightarrow \alpha =\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow \alpha =\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|$
The area of the triangle with vertices $\left( 3,7 \right),\left( -5,2 \right),$ and $\left( 2,5 \right)$ is given by $\Delta$ .
Find the value of $\Delta$ using the above formula, we get,
$\Rightarrow \Delta =\dfrac{1}{2}\left| \begin{matrix}
3 & 7 & 1 \\
-5 & 2 & 1 \\
2 & 5 & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow \Delta =\dfrac{1}{2}\left| 3\left( 2-5 \right)-7\left( \left( -5 \right)-2 \right)+1\left( \left( -25 \right)-4 \right) \right|$
Simplifying the above equation, we get,
$\Rightarrow \Delta =\dfrac{1}{2}\left| 3\left( -3 \right)-7\left( -7 \right)+1\left( -29 \right) \right|$
Evaluating the equation further,
$\Rightarrow \Delta =\dfrac{1}{2}\left| -9+49-29 \right|$
$\therefore \Delta =\dfrac{11}{2}$
The area of the triangle with vertices $\left( 0,0 \right),\left( -5,2 \right),$ and $\left( 2,5 \right)$ is given by ${{\Delta }_{A}}$
Find the value of ${{\Delta }_{A}}$ using the above formula, we get,
$\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| \begin{matrix}
0 & 0 & 1 \\
-5 & 2 & 1 \\
2 & 5 & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| 0\left( 2-5 \right)-0\left( \left( -5 \right)-2 \right)+1\left( \left( -25 \right)-4 \right) \right|$
Simplifying the above equation, we get,
$\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| \left( \left( -25 \right)-4 \right) \right|$
$\Rightarrow {{\Delta }_{A}}=\dfrac{1}{2}\left| -29 \right|$
$\therefore {{\Delta }_{A}}=\dfrac{29}{2}$
The area of the triangle with vertices $\left( 3,7 \right),\left( 0,0 \right),$ and $\left( 2,5 \right)$ is given by ${{\Delta }_{B}}$
Find the value of ${{\Delta }_{B}}$ using the above formula, we get,
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| \begin{matrix}
3 & 7 & 1 \\
0 & 0 & 1 \\
2 & 5 & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| 3\left( 0-5 \right)-7\left( 0-2 \right)+1\left( 0-0 \right) \right|$
Simplifying the above equation, we get,
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| 3\left( -5 \right)-7\left( -2 \right)+0 \right|$
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| -15+14 \right|$
$\Rightarrow {{\Delta }_{B}}=\dfrac{1}{2}\left| -1 \right|$
$\therefore {{\Delta }_{B}}=\dfrac{1}{2}$
The area of the triangle with vertices $\left( 3,7 \right),\left( -5,2 \right),$ and $\left( 0,0 \right)$ is given by ${{\Delta }_{C}}$
$\Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| \begin{matrix}
3 & 7 & 1 \\
-5 & 2 & 1 \\
0 & 0 & 1 \\
\end{matrix} \right|$The value of the determinant is given by
$\Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| 3\left( 2-0 \right)-7\left( -5-0 \right)+1\left( 0-0 \right) \right|$
Simplifying the above equation, we get,
$\Rightarrow {{\Delta }_{C}}=\dfrac{1}{2}\left| 6+35+1 \right|$
$\therefore {{\Delta }_{C}}=\dfrac{41}{2}$
From the above,
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{29}{2}+\dfrac{1}{2}+\dfrac{11}{2}$
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{29+1+11}{2}$
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta =\dfrac{41}{2}$
We know that ${{\Delta }_{C}}=\dfrac{41}{2}$ . Substituting the same, we get,
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}+\Delta ={{\Delta }_{C}}$
Moving the term $\Delta$ to the other side of the equation, we get,
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}={{\Delta }_{C}}-\Delta$
So, the correct answer is “Option B”.
Note: We need to keep in mind that the correct formula has to be applied and the values substituted should be correct while solving these questions. The result of the given question can be cross-checked using the equation
${{\Delta }_{A}}+{{\Delta }_{B}}={{\Delta }_{C}}-\Delta$
LHS:
$\Rightarrow {{\Delta }_{A}}+{{\Delta }_{B}}$
$\Rightarrow \dfrac{29}{2}+\dfrac{1}{2}$
$\Rightarrow \dfrac{30}{2}$
$\Rightarrow 15$
RHS:
$\Rightarrow {{\Delta }_{C}}-\Delta$
$\Rightarrow \dfrac{41}{2}-\dfrac{11}{2}$
$\Rightarrow \dfrac{30}{2}$
$\Rightarrow 15$
LHS $=\;$ RHS
The result attained is correct.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

