
The activity of the hair of an Egyptian mummy is ${\text{7}}$disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$ of ${{\text{C}}^{{\text{14}}}}$. Find the age of mummy. Given ${{\text{t}}_{{\text{0}}{\text{.5}}}}$ of ${{\text{C}}^{{\text{14}}}}$ is $5770$ year and disintegration rate of fresh sample of ${{\text{C}}^{{\text{14}}}}$ is $14$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
Answer
562.5k+ views
Hint: To determine the answer we should know the radioactive decay constant and half-life formula. We will substitute the half-life value in the radioactive decay constant formula and we will consider the initial concentration of radioactive nuclei as hundred percent. By substituting all values we can determine the age of mummy.
Complete step-by-step solution:
The relation between radioactive disintegration constant and half-life is as follows:
\[{{\text{t}}_{{\text{1/2}}}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{\lambda }\]
Where,
\[{{\text{t}}_{{\text{1/2}}}}\] is the half life
\[{\lambda }\] is the radioactive decay constant
The formula to determine the radioactive decay constant is as follows:
\[{\lambda }\,{\text{ = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
Where,
\[{{\text{N}}_{\text{o}}}\]is the initial concentration of radioactive substance
\[{\text{N}}\]is the concentration of radioactive substance at time t.
On substituting the value of radioactive decay constant \[{\lambda }\]from half-life formula to radioactive decay constant formula we get,
\[\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{{\text{1/2}}}}}}{\text{ = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
On rearranging the above formula for t we get,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}}{{\text{t}}_{{\text{1/2}}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
The rate of disintegration is given by,
$ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{ = \lambda N}$
At initially, the rate of disintegration of fresh sample of ${{\text{C}}^{{\text{14}}}}$ is $14$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
For initial rate, $ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{\text{ = }}\,{\lambda }{{\text{N}}_{\text{o}}}\,\,{\text{ = }}\,{\text{14}}$….$(1)$
At initially, the rate of disintegration of sample of ${{\text{C}}^{{\text{14}}}}$ is $7$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
For rate at half-life, $ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{\text{ = }}\,{\lambda }{{\text{N}}_{\text{t}}}\,\,{\text{ = }}\,7$…$(2)$
On dividing equation $(1)$ by$(2)$,
$\,\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}\,\,{\text{ = }}\,\dfrac{{14}}{7}$
$\,\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}\,\,{\text{ = }}\,2$
On substituting $2$for $\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}$and $5770$ for half-life in radioactive decay formula,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 2\]
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 0.30\]
\[{\text{t = }}\,\dfrac{{0.693}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\,\]
\[{\text{t = }}\,{\text{5770}}\,{\text{year}}\]
So, the age of mummy is \[{\text{5770}}\]year.
Note: If the initial concentration was $100$%. We know at the half-life the left concentration will be $50$%. On substituting $100$for \[{{\text{N}}_{\text{o}}}\], $50$for N and $5770$ for half-life in radioactive decay formula,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log \dfrac{{100}}{{50}}\]
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 0.30\]
\[{\text{t = }}\,\dfrac{{0.693}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\,\]
\[{\text{t = }}\,{\text{5770}}\,{\text{year}}\]
The radioactive reaction is a first-order reaction. The half-life of the radioactive reaction is inversely proportional to the radioactive decay constant. The half-life of radioactive reactions does not depend upon the initial concentration of radioactive nuclei.
Complete step-by-step solution:
The relation between radioactive disintegration constant and half-life is as follows:
\[{{\text{t}}_{{\text{1/2}}}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}}}{\lambda }\]
Where,
\[{{\text{t}}_{{\text{1/2}}}}\] is the half life
\[{\lambda }\] is the radioactive decay constant
The formula to determine the radioactive decay constant is as follows:
\[{\lambda }\,{\text{ = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
Where,
\[{{\text{N}}_{\text{o}}}\]is the initial concentration of radioactive substance
\[{\text{N}}\]is the concentration of radioactive substance at time t.
On substituting the value of radioactive decay constant \[{\lambda }\]from half-life formula to radioactive decay constant formula we get,
\[\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{{\text{1/2}}}}}}{\text{ = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{\text{t}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
On rearranging the above formula for t we get,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}}{{\text{t}}_{{\text{1/2}}}}\log \dfrac{{{{\text{N}}_{\text{o}}}}}{{\text{N}}}\]
The rate of disintegration is given by,
$ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{ = \lambda N}$
At initially, the rate of disintegration of fresh sample of ${{\text{C}}^{{\text{14}}}}$ is $14$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
For initial rate, $ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{\text{ = }}\,{\lambda }{{\text{N}}_{\text{o}}}\,\,{\text{ = }}\,{\text{14}}$….$(1)$
At initially, the rate of disintegration of sample of ${{\text{C}}^{{\text{14}}}}$ is $7$ disintegration ${\text{minut}}{{\text{e}}^{ - 1}}$.
For rate at half-life, $ - \dfrac{{{\text{dN}}}}{{{\text{dt}}}}\,{\text{ = }}\,{\lambda }{{\text{N}}_{\text{t}}}\,\,{\text{ = }}\,7$…$(2)$
On dividing equation $(1)$ by$(2)$,
$\,\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}\,\,{\text{ = }}\,\dfrac{{14}}{7}$
$\,\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}\,\,{\text{ = }}\,2$
On substituting $2$for $\dfrac{{{{\text{N}}_{\text{o}}}}}{{{{\text{N}}_{\text{t}}}}}$and $5770$ for half-life in radioactive decay formula,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 2\]
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 0.30\]
\[{\text{t = }}\,\dfrac{{0.693}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\,\]
\[{\text{t = }}\,{\text{5770}}\,{\text{year}}\]
So, the age of mummy is \[{\text{5770}}\]year.
Note: If the initial concentration was $100$%. We know at the half-life the left concentration will be $50$%. On substituting $100$for \[{{\text{N}}_{\text{o}}}\], $50$for N and $5770$ for half-life in radioactive decay formula,
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log \dfrac{{100}}{{50}}\]
\[{\text{t = }}\,\dfrac{{{\text{2}}{\text{.303}}}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\, \times \log 0.30\]
\[{\text{t = }}\,\dfrac{{0.693}}{{{\text{0}}{\text{.693}}}} \times {\text{5770}}\,\]
\[{\text{t = }}\,{\text{5770}}\,{\text{year}}\]
The radioactive reaction is a first-order reaction. The half-life of the radioactive reaction is inversely proportional to the radioactive decay constant. The half-life of radioactive reactions does not depend upon the initial concentration of radioactive nuclei.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

