Answer

Verified

476.7k+ views

Hint: If we have a closer look to the given series that is 12345678910111213……………………..These are nothing but a series of all the natural numbers starting from 1 and going up to infinity. Try and observe a pattern in the number of digits that we have from 1 to 9, then from 10 to 99 and so on to reach the solution.

Complete step-by-step answer:

Now, all the natural numbers are listed in the given series and we need to figure out the 2006th digit in it.

Now, if we talk about the total number of 1 digit numbers that will be there in the sequence then it will be equal to 9 that is from $1 \leftrightarrow 9 $ using (9-1+1=9).

Thus, the number of digits will be 1 in each number this makes $1 \times 9 = 9$ digits……. (1)

Now, if we talk about the total number of 2 digit number that will be there in the sequence than it will be equal to 90 that is from $10 \leftrightarrow 99 $ using (99-10+1=90)

Thus, the number of digits will be 2 in each number. This makes $2 \times 90 = 180$ digits………………… (2)

Now, if we talk about the total number of 3 digit number that will be there in the sequence than it will be equal to 900 that is from $100 \leftrightarrow 999$ using (999-100+1=900)

Thus the number of digits will be 3 in each number this makes $3 \times 900 = 2700$ digits………………. (3)

Now, if we add total number of digits that we have till now than it will be $9 + 180 + 2700 = 2889$ (using equation 1, 2, 3)

But, we have to find the 2006th digit, this means that we have to stop somewhere in between the 3 digits numbers to reach the total 2006th digit.

Now, let’s have a hit and trail.

If we talk about the total number of 3 digit numbers that will be there in the sequence from $100 \leftrightarrow 699$ then it will be equal to 600, using (699-100+1=600).

Thus, the number of digits will be 3 in each number thus $3 \times 600 = 1800$ digits………………. (4)

Now, if we add total number of digits that we have till now than it will be $9 + 180 + 1800 = 1989$ (using equation 1, 2, 4)

It is clear that it is still $2006 > 1989$ so we need to get closer.

Now, if we talk about the total number of 3 digit numbers that will be there in the sequence from $700 \leftrightarrow 704$ then it will be equal to 5, using (704-700+1=5).

Thus, the number of digits will be 3 in each number this makes $3 \times 5 = 15$ digits………………. (5)

Now, if we add total number of digits that we have till now than it will be $9 + 180 + 1800 + 15 = 2004$ (using equation 1, 2, 4, 5)

This means that we have covered 2004 digits till now, that is till 704 number, now the next number will be 705.

So, in 705, 7 will be our 2005th digit of sequence and 0 will be our 2006th digit.

Thus the 2006th digit of our sequence is 0.

Note: Whenever we face such types of problems always try and get closer to the required number of digits by calculating the total number of digits for the numbers that you have observed till now. This will help get the right track to reach the required answer.

Complete step-by-step answer:

Now, all the natural numbers are listed in the given series and we need to figure out the 2006th digit in it.

Now, if we talk about the total number of 1 digit numbers that will be there in the sequence then it will be equal to 9 that is from $1 \leftrightarrow 9 $ using (9-1+1=9).

Thus, the number of digits will be 1 in each number this makes $1 \times 9 = 9$ digits……. (1)

Now, if we talk about the total number of 2 digit number that will be there in the sequence than it will be equal to 90 that is from $10 \leftrightarrow 99 $ using (99-10+1=90)

Thus, the number of digits will be 2 in each number. This makes $2 \times 90 = 180$ digits………………… (2)

Now, if we talk about the total number of 3 digit number that will be there in the sequence than it will be equal to 900 that is from $100 \leftrightarrow 999$ using (999-100+1=900)

Thus the number of digits will be 3 in each number this makes $3 \times 900 = 2700$ digits………………. (3)

Now, if we add total number of digits that we have till now than it will be $9 + 180 + 2700 = 2889$ (using equation 1, 2, 3)

But, we have to find the 2006th digit, this means that we have to stop somewhere in between the 3 digits numbers to reach the total 2006th digit.

Now, let’s have a hit and trail.

If we talk about the total number of 3 digit numbers that will be there in the sequence from $100 \leftrightarrow 699$ then it will be equal to 600, using (699-100+1=600).

Thus, the number of digits will be 3 in each number thus $3 \times 600 = 1800$ digits………………. (4)

Now, if we add total number of digits that we have till now than it will be $9 + 180 + 1800 = 1989$ (using equation 1, 2, 4)

It is clear that it is still $2006 > 1989$ so we need to get closer.

Now, if we talk about the total number of 3 digit numbers that will be there in the sequence from $700 \leftrightarrow 704$ then it will be equal to 5, using (704-700+1=5).

Thus, the number of digits will be 3 in each number this makes $3 \times 5 = 15$ digits………………. (5)

Now, if we add total number of digits that we have till now than it will be $9 + 180 + 1800 + 15 = 2004$ (using equation 1, 2, 4, 5)

This means that we have covered 2004 digits till now, that is till 704 number, now the next number will be 705.

So, in 705, 7 will be our 2005th digit of sequence and 0 will be our 2006th digit.

Thus the 2006th digit of our sequence is 0.

Note: Whenever we face such types of problems always try and get closer to the required number of digits by calculating the total number of digits for the numbers that you have observed till now. This will help get the right track to reach the required answer.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How do you graph the function fx 4x class 9 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths