
Ten years ago, a father was twelve times as old as his son and ten years hence, he will be twice as old as he was then. Find their present ages.
Answer
601.5k+ views
Hint – Here we will proceed by assuming the present ages of father and son as variables and as per given conditions in problem form the linear equations in two variables. By using linear equations solving methods we will get our answer.
Complete step-by-step solution -
Let the present age of father $ = x$ years.
And the present age of his son $ = y$ years.
Therefore, According to first condition: -
$x - 10 = 12\left( {y - 10} \right)$
$\Rightarrow x - 10 = 12y - 120$
$\Rightarrow x - 12y = - 120 + 10$
$\Rightarrow x - 12y = - 110$ ….. (1)
Therefore, According to second condition: -
$x + 10 = 2\left( {y + 10} \right)$
$\Rightarrow x + 10 = 2y + 20$
$\Rightarrow x - 2y = 20 - 10$
$\Rightarrow x - 2y = 10$ ….. (2)
Therefore, subtracting equation (2) from (1)
$(x - 12y = - 110)$ - $(x - 2y = 10)$
On subtracting, we will get
$\Rightarrow {- 10y} = - 120$
$\Rightarrow y = \dfrac{{ - 120}}{{ - 10}}$
$\Rightarrow y = 12$
Therefore, put $y = 12$ in equation (1).
$ x - 12y = - 110$
$\Rightarrow x - 12\left( {12} \right) = - 110$
$\Rightarrow x - 144 = - 110$
$\Rightarrow x = - 110 + 144$
$\Rightarrow x = 34$
Therefore, the present age of the father is x = 34 years and the present age of y = 12 years.
Note – Whenever we come up with this type of problem, one must know that there are three ways to solve systems of linear equations in two variables : graphing method, substitution method and elimination method. (Here substitution method).
Complete step-by-step solution -
Let the present age of father $ = x$ years.
And the present age of his son $ = y$ years.
Therefore, According to first condition: -
$x - 10 = 12\left( {y - 10} \right)$
$\Rightarrow x - 10 = 12y - 120$
$\Rightarrow x - 12y = - 120 + 10$
$\Rightarrow x - 12y = - 110$ ….. (1)
Therefore, According to second condition: -
$x + 10 = 2\left( {y + 10} \right)$
$\Rightarrow x + 10 = 2y + 20$
$\Rightarrow x - 2y = 20 - 10$
$\Rightarrow x - 2y = 10$ ….. (2)
Therefore, subtracting equation (2) from (1)
$(x - 12y = - 110)$ - $(x - 2y = 10)$
On subtracting, we will get
$\Rightarrow {- 10y} = - 120$
$\Rightarrow y = \dfrac{{ - 120}}{{ - 10}}$
$\Rightarrow y = 12$
Therefore, put $y = 12$ in equation (1).
$ x - 12y = - 110$
$\Rightarrow x - 12\left( {12} \right) = - 110$
$\Rightarrow x - 144 = - 110$
$\Rightarrow x = - 110 + 144$
$\Rightarrow x = 34$
Therefore, the present age of the father is x = 34 years and the present age of y = 12 years.
Note – Whenever we come up with this type of problem, one must know that there are three ways to solve systems of linear equations in two variables : graphing method, substitution method and elimination method. (Here substitution method).
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

