
Tangents are drawn to the hyperbola $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$, parallel to the straight line $2x - y = 1$. the points of contact of the tangents on the hyperbola are:
A. $\left( {\dfrac{9}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)$
B. $\left( { - \dfrac{9}{{2\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)$
C. $\left( {3\sqrt 3 , - 2\sqrt 2 } \right)$
D. $\left( { - 3\sqrt 3 ,2\sqrt 2 } \right)$
Answer
512.7k+ views
Hint: Take the derivative of both the equations i.e the equation of straight line and equation of hyperbola and by rearranging the equations, determine the value of $x$. After finding the value of $x$ substitute the value of $x$ in the straight line to get the value of $y$.
Complete step-by-step answer:
Given data:
The hyperbola equation is $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$
The straight-line equation is $2x - y = 1$
Now, calculate the slope of the straight line by differentiating the equation $2x - y = 1$ with respect to $x$.
\[
\dfrac{d}{{dx}}\left( {2x - y} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\
2 - \dfrac{{dy}}{{dx}} = 0\\
\dfrac{{dy}}{{dx}} = 2
\]
Now, differentiate the hyperbola equation $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$ with respect to $x$ :
$
\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4}} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\
\dfrac{{2x}}{9} - \dfrac{{2y}}{4}\dfrac{{dy}}{{dx}} = 0\\
\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{9} \times \dfrac{4}{{2y}}\\
= \dfrac{{4x}}{{9y}}
$
Substitute the value of $\dfrac{{dy}}{{dx}} = 2$ in $\dfrac{{dy}}{{dx}} = \dfrac{{4x}}{{9y}}$.
$
2 = \dfrac{{4x}}{{9y}}\\
4x = 18y\\
x = \dfrac{{18}}{4}y\\
x = \dfrac{9}{2}y
$
Substitute the value of$x$ in $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$.
$
\dfrac{{{{\left( {\dfrac{9}{2}y} \right)}^2}}}{9} - \dfrac{{{y^2}}}{4} = 1\\
\dfrac{{9{y^2}}}{4} - \dfrac{{{y^2}}}{4} = 1\\
\dfrac{{8{y^2}}}{4} = 1\\
y = \pm \dfrac{1}{{\sqrt 2 }}
$
Now, calculate the value of $x$ by substituting the value of y in $x = \dfrac{9}{2}y$.
$
x = \dfrac{9}{2}\left( { \pm \dfrac{1}{{\sqrt 2 }}} \right)\\
= \pm \dfrac{9}{{2\sqrt 2 }}
$
Hence, the points of contact are $\left( {\dfrac{9}{{2\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right){\rm{ and }}\left( { - \dfrac{9}{{2\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)$.
Option (A) and (B) are the correct answers.
Note: The general equation of the tangent to hyperbola is $y = mx \pm \sqrt {{a^2}{m^2} - {b^2}} $, where the slope is given by $m$. Make sure that chain rule is used in derivatives of complex functions.
Complete step-by-step answer:
Given data:
The hyperbola equation is $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$
The straight-line equation is $2x - y = 1$
Now, calculate the slope of the straight line by differentiating the equation $2x - y = 1$ with respect to $x$.
\[
\dfrac{d}{{dx}}\left( {2x - y} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\
2 - \dfrac{{dy}}{{dx}} = 0\\
\dfrac{{dy}}{{dx}} = 2
\]
Now, differentiate the hyperbola equation $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$ with respect to $x$ :
$
\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4}} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\
\dfrac{{2x}}{9} - \dfrac{{2y}}{4}\dfrac{{dy}}{{dx}} = 0\\
\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{9} \times \dfrac{4}{{2y}}\\
= \dfrac{{4x}}{{9y}}
$
Substitute the value of $\dfrac{{dy}}{{dx}} = 2$ in $\dfrac{{dy}}{{dx}} = \dfrac{{4x}}{{9y}}$.
$
2 = \dfrac{{4x}}{{9y}}\\
4x = 18y\\
x = \dfrac{{18}}{4}y\\
x = \dfrac{9}{2}y
$
Substitute the value of$x$ in $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$.
$
\dfrac{{{{\left( {\dfrac{9}{2}y} \right)}^2}}}{9} - \dfrac{{{y^2}}}{4} = 1\\
\dfrac{{9{y^2}}}{4} - \dfrac{{{y^2}}}{4} = 1\\
\dfrac{{8{y^2}}}{4} = 1\\
y = \pm \dfrac{1}{{\sqrt 2 }}
$
Now, calculate the value of $x$ by substituting the value of y in $x = \dfrac{9}{2}y$.
$
x = \dfrac{9}{2}\left( { \pm \dfrac{1}{{\sqrt 2 }}} \right)\\
= \pm \dfrac{9}{{2\sqrt 2 }}
$
Hence, the points of contact are $\left( {\dfrac{9}{{2\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right){\rm{ and }}\left( { - \dfrac{9}{{2\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)$.
Option (A) and (B) are the correct answers.
Note: The general equation of the tangent to hyperbola is $y = mx \pm \sqrt {{a^2}{m^2} - {b^2}} $, where the slope is given by $m$. Make sure that chain rule is used in derivatives of complex functions.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
