
Tangents are drawn to the hyperbola $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$, parallel to the straight line $2x - y = 1$. the points of contact of the tangents on the hyperbola are:
A. $\left( {\dfrac{9}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)$
B. $\left( { - \dfrac{9}{{2\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)$
C. $\left( {3\sqrt 3 , - 2\sqrt 2 } \right)$
D. $\left( { - 3\sqrt 3 ,2\sqrt 2 } \right)$
Answer
579k+ views
Hint: Take the derivative of both the equations i.e the equation of straight line and equation of hyperbola and by rearranging the equations, determine the value of $x$. After finding the value of $x$ substitute the value of $x$ in the straight line to get the value of $y$.
Complete step-by-step answer:
Given data:
The hyperbola equation is $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$
The straight-line equation is $2x - y = 1$
Now, calculate the slope of the straight line by differentiating the equation $2x - y = 1$ with respect to $x$.
\[
\dfrac{d}{{dx}}\left( {2x - y} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\
2 - \dfrac{{dy}}{{dx}} = 0\\
\dfrac{{dy}}{{dx}} = 2
\]
Now, differentiate the hyperbola equation $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$ with respect to $x$ :
$
\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4}} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\
\dfrac{{2x}}{9} - \dfrac{{2y}}{4}\dfrac{{dy}}{{dx}} = 0\\
\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{9} \times \dfrac{4}{{2y}}\\
= \dfrac{{4x}}{{9y}}
$
Substitute the value of $\dfrac{{dy}}{{dx}} = 2$ in $\dfrac{{dy}}{{dx}} = \dfrac{{4x}}{{9y}}$.
$
2 = \dfrac{{4x}}{{9y}}\\
4x = 18y\\
x = \dfrac{{18}}{4}y\\
x = \dfrac{9}{2}y
$
Substitute the value of$x$ in $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$.
$
\dfrac{{{{\left( {\dfrac{9}{2}y} \right)}^2}}}{9} - \dfrac{{{y^2}}}{4} = 1\\
\dfrac{{9{y^2}}}{4} - \dfrac{{{y^2}}}{4} = 1\\
\dfrac{{8{y^2}}}{4} = 1\\
y = \pm \dfrac{1}{{\sqrt 2 }}
$
Now, calculate the value of $x$ by substituting the value of y in $x = \dfrac{9}{2}y$.
$
x = \dfrac{9}{2}\left( { \pm \dfrac{1}{{\sqrt 2 }}} \right)\\
= \pm \dfrac{9}{{2\sqrt 2 }}
$
Hence, the points of contact are $\left( {\dfrac{9}{{2\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right){\rm{ and }}\left( { - \dfrac{9}{{2\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)$.
Option (A) and (B) are the correct answers.
Note: The general equation of the tangent to hyperbola is $y = mx \pm \sqrt {{a^2}{m^2} - {b^2}} $, where the slope is given by $m$. Make sure that chain rule is used in derivatives of complex functions.
Complete step-by-step answer:
Given data:
The hyperbola equation is $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$
The straight-line equation is $2x - y = 1$
Now, calculate the slope of the straight line by differentiating the equation $2x - y = 1$ with respect to $x$.
\[
\dfrac{d}{{dx}}\left( {2x - y} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\
2 - \dfrac{{dy}}{{dx}} = 0\\
\dfrac{{dy}}{{dx}} = 2
\]
Now, differentiate the hyperbola equation $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$ with respect to $x$ :
$
\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4}} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\
\dfrac{{2x}}{9} - \dfrac{{2y}}{4}\dfrac{{dy}}{{dx}} = 0\\
\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{9} \times \dfrac{4}{{2y}}\\
= \dfrac{{4x}}{{9y}}
$
Substitute the value of $\dfrac{{dy}}{{dx}} = 2$ in $\dfrac{{dy}}{{dx}} = \dfrac{{4x}}{{9y}}$.
$
2 = \dfrac{{4x}}{{9y}}\\
4x = 18y\\
x = \dfrac{{18}}{4}y\\
x = \dfrac{9}{2}y
$
Substitute the value of$x$ in $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1$.
$
\dfrac{{{{\left( {\dfrac{9}{2}y} \right)}^2}}}{9} - \dfrac{{{y^2}}}{4} = 1\\
\dfrac{{9{y^2}}}{4} - \dfrac{{{y^2}}}{4} = 1\\
\dfrac{{8{y^2}}}{4} = 1\\
y = \pm \dfrac{1}{{\sqrt 2 }}
$
Now, calculate the value of $x$ by substituting the value of y in $x = \dfrac{9}{2}y$.
$
x = \dfrac{9}{2}\left( { \pm \dfrac{1}{{\sqrt 2 }}} \right)\\
= \pm \dfrac{9}{{2\sqrt 2 }}
$
Hence, the points of contact are $\left( {\dfrac{9}{{2\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right){\rm{ and }}\left( { - \dfrac{9}{{2\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)$.
Option (A) and (B) are the correct answers.
Note: The general equation of the tangent to hyperbola is $y = mx \pm \sqrt {{a^2}{m^2} - {b^2}} $, where the slope is given by $m$. Make sure that chain rule is used in derivatives of complex functions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

How is democracy better than other forms of government class 12 social science CBSE

