Answer
Verified
424.2k+ views
Hint: Multinomial theorem is the generalization of binomial theorem. Binomial theorem is given as \[{\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^n}{\left( b \right)^0} + {}^n{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + ..... + {}^n{C_n}{\left( a \right)^0}{\left( b \right)^n}\].
Complete step by step solution:
Step 1: We have to state the multinomial theorem. It is the generalization of the binomial theorem. It describes how to expand a power of a sum in terms of powers of the terms in that sum. It states that “For any positive integer $m$ and any non – negative integer $n$ the sum of $m$ terms raised to power $n$ is expanded as
${\left( {{x_1} + {x_2} + ..... + {x_m}} \right)^n} = \sum\limits_{{k_1} + {k_2} + .... + {k_m} = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_m}}
\end{array}} \right)} \prod\limits_{t = 1}^m {x_t^{{k_t}}} $
Where $\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_m}}
\end{array}} \right) = \dfrac{{n!}}{{{k_1}!{k_2}!....{k_m}!}}$ is a multinomial coefficient. “
Here the important thing to keep in mind is that the sum is taken over all combinations of non negative integer indices ${k_1}$ to ${k_m}$ is such that the sum of all ${k_i}$ is $n$ .That is, for each term in the expansion, the exponent of the ${x_i}$ must adds up to $n$ .
When the value of $n = 2$ the multinomial theorem is converted into binomial theorem.
Step 2: Now, we can prove multinomial theorem by using binomial theorem and rule of mathematical induction. The expression holds for $m = 1$ as LHS and RHS are equal.
Now, let us consider that above expression is true for the value of $m$ also.
Now we will prove the expression for $m + 1$ . For that, writing the above expression for $m + 1$ terms, we get
${\left( {{x_1} + {x_2} + ..... + {x_m} + {x_{m + 1}}} \right)^n}$
Separating the last two terms, we get
\[
\Rightarrow {\left( {{x_1} + {x_2} + ..... + {x_{m - 1}} + \left( {{x_m} + {x_{m + 1}}} \right)} \right)^n} \\
\Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right)} \prod\limits_{t = 1}^{m - 1} {x_t^{{k_t}}} \times {\left( {{x_m} + {x_{m + 1}}} \right)^K} \\
\]
Now applying the binomial theorem for the last factor, we get
\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}} \right) \times \sum\limits_{{k_m} + {k_{m + 1}} = K} {\left( {\begin{array}{*{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right)} \left( {x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]
Step 3: Now in the above step, the value of
\[
\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right) \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!K!}} \times \dfrac{{K!}}{{{k_m}!{k_{m + 1}}!}} \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!{k_m}!{k_{m + 1}}!}} \\
= \left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right) \\
\]
Substituting the value, we get
\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + {k_m} + {k_{m + 1}} = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]
Hence proved.
Note: The induction hypothesis is proved for $n = 1$ . Then we assume that the statement is true for $n$ terms. Then by using this assumed result, we proved the statement for $n + 1$ terms.
Complete step by step solution:
Step 1: We have to state the multinomial theorem. It is the generalization of the binomial theorem. It describes how to expand a power of a sum in terms of powers of the terms in that sum. It states that “For any positive integer $m$ and any non – negative integer $n$ the sum of $m$ terms raised to power $n$ is expanded as
${\left( {{x_1} + {x_2} + ..... + {x_m}} \right)^n} = \sum\limits_{{k_1} + {k_2} + .... + {k_m} = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_m}}
\end{array}} \right)} \prod\limits_{t = 1}^m {x_t^{{k_t}}} $
Where $\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_m}}
\end{array}} \right) = \dfrac{{n!}}{{{k_1}!{k_2}!....{k_m}!}}$ is a multinomial coefficient. “
Here the important thing to keep in mind is that the sum is taken over all combinations of non negative integer indices ${k_1}$ to ${k_m}$ is such that the sum of all ${k_i}$ is $n$ .That is, for each term in the expansion, the exponent of the ${x_i}$ must adds up to $n$ .
When the value of $n = 2$ the multinomial theorem is converted into binomial theorem.
Step 2: Now, we can prove multinomial theorem by using binomial theorem and rule of mathematical induction. The expression holds for $m = 1$ as LHS and RHS are equal.
Now, let us consider that above expression is true for the value of $m$ also.
Now we will prove the expression for $m + 1$ . For that, writing the above expression for $m + 1$ terms, we get
${\left( {{x_1} + {x_2} + ..... + {x_m} + {x_{m + 1}}} \right)^n}$
Separating the last two terms, we get
\[
\Rightarrow {\left( {{x_1} + {x_2} + ..... + {x_{m - 1}} + \left( {{x_m} + {x_{m + 1}}} \right)} \right)^n} \\
\Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right)} \prod\limits_{t = 1}^{m - 1} {x_t^{{k_t}}} \times {\left( {{x_m} + {x_{m + 1}}} \right)^K} \\
\]
Now applying the binomial theorem for the last factor, we get
\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}} \right) \times \sum\limits_{{k_m} + {k_{m + 1}} = K} {\left( {\begin{array}{*{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right)} \left( {x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]
Step 3: Now in the above step, the value of
\[
\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right) \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!K!}} \times \dfrac{{K!}}{{{k_m}!{k_{m + 1}}!}} \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!{k_m}!{k_{m + 1}}!}} \\
= \left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right) \\
\]
Substituting the value, we get
\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + {k_m} + {k_{m + 1}} = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]
Hence proved.
Note: The induction hypothesis is proved for $n = 1$ . Then we assume that the statement is true for $n$ terms. Then by using this assumed result, we proved the statement for $n + 1$ terms.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE