
State and prove a multinomial theorem?
Answer
538.2k+ views
Hint: Multinomial theorem is the generalization of binomial theorem. Binomial theorem is given as \[{\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^n}{\left( b \right)^0} + {}^n{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + ..... + {}^n{C_n}{\left( a \right)^0}{\left( b \right)^n}\].
Complete step by step solution:
Step 1: We have to state the multinomial theorem. It is the generalization of the binomial theorem. It describes how to expand a power of a sum in terms of powers of the terms in that sum. It states that “For any positive integer $m$ and any non – negative integer $n$ the sum of $m$ terms raised to power $n$ is expanded as
${\left( {{x_1} + {x_2} + ..... + {x_m}} \right)^n} = \sum\limits_{{k_1} + {k_2} + .... + {k_m} = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_m}}
\end{array}} \right)} \prod\limits_{t = 1}^m {x_t^{{k_t}}} $
Where $\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_m}}
\end{array}} \right) = \dfrac{{n!}}{{{k_1}!{k_2}!....{k_m}!}}$ is a multinomial coefficient. “
Here the important thing to keep in mind is that the sum is taken over all combinations of non negative integer indices ${k_1}$ to ${k_m}$ is such that the sum of all ${k_i}$ is $n$ .That is, for each term in the expansion, the exponent of the ${x_i}$ must adds up to $n$ .
When the value of $n = 2$ the multinomial theorem is converted into binomial theorem.
Step 2: Now, we can prove multinomial theorem by using binomial theorem and rule of mathematical induction. The expression holds for $m = 1$ as LHS and RHS are equal.
Now, let us consider that above expression is true for the value of $m$ also.
Now we will prove the expression for $m + 1$ . For that, writing the above expression for $m + 1$ terms, we get
${\left( {{x_1} + {x_2} + ..... + {x_m} + {x_{m + 1}}} \right)^n}$
Separating the last two terms, we get
\[
\Rightarrow {\left( {{x_1} + {x_2} + ..... + {x_{m - 1}} + \left( {{x_m} + {x_{m + 1}}} \right)} \right)^n} \\
\Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right)} \prod\limits_{t = 1}^{m - 1} {x_t^{{k_t}}} \times {\left( {{x_m} + {x_{m + 1}}} \right)^K} \\
\]
Now applying the binomial theorem for the last factor, we get
\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}} \right) \times \sum\limits_{{k_m} + {k_{m + 1}} = K} {\left( {\begin{array}{*{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right)} \left( {x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]
Step 3: Now in the above step, the value of
\[
\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right) \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!K!}} \times \dfrac{{K!}}{{{k_m}!{k_{m + 1}}!}} \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!{k_m}!{k_{m + 1}}!}} \\
= \left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right) \\
\]
Substituting the value, we get
\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + {k_m} + {k_{m + 1}} = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]
Hence proved.
Note: The induction hypothesis is proved for $n = 1$ . Then we assume that the statement is true for $n$ terms. Then by using this assumed result, we proved the statement for $n + 1$ terms.
Complete step by step solution:
Step 1: We have to state the multinomial theorem. It is the generalization of the binomial theorem. It describes how to expand a power of a sum in terms of powers of the terms in that sum. It states that “For any positive integer $m$ and any non – negative integer $n$ the sum of $m$ terms raised to power $n$ is expanded as
${\left( {{x_1} + {x_2} + ..... + {x_m}} \right)^n} = \sum\limits_{{k_1} + {k_2} + .... + {k_m} = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_m}}
\end{array}} \right)} \prod\limits_{t = 1}^m {x_t^{{k_t}}} $
Where $\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_m}}
\end{array}} \right) = \dfrac{{n!}}{{{k_1}!{k_2}!....{k_m}!}}$ is a multinomial coefficient. “
Here the important thing to keep in mind is that the sum is taken over all combinations of non negative integer indices ${k_1}$ to ${k_m}$ is such that the sum of all ${k_i}$ is $n$ .That is, for each term in the expansion, the exponent of the ${x_i}$ must adds up to $n$ .
When the value of $n = 2$ the multinomial theorem is converted into binomial theorem.
Step 2: Now, we can prove multinomial theorem by using binomial theorem and rule of mathematical induction. The expression holds for $m = 1$ as LHS and RHS are equal.
Now, let us consider that above expression is true for the value of $m$ also.
Now we will prove the expression for $m + 1$ . For that, writing the above expression for $m + 1$ terms, we get
${\left( {{x_1} + {x_2} + ..... + {x_m} + {x_{m + 1}}} \right)^n}$
Separating the last two terms, we get
\[
\Rightarrow {\left( {{x_1} + {x_2} + ..... + {x_{m - 1}} + \left( {{x_m} + {x_{m + 1}}} \right)} \right)^n} \\
\Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right)} \prod\limits_{t = 1}^{m - 1} {x_t^{{k_t}}} \times {\left( {{x_m} + {x_{m + 1}}} \right)^K} \\
\]
Now applying the binomial theorem for the last factor, we get
\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}} \right) \times \sum\limits_{{k_m} + {k_{m + 1}} = K} {\left( {\begin{array}{*{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right)} \left( {x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]
Step 3: Now in the above step, the value of
\[
\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right) \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!K!}} \times \dfrac{{K!}}{{{k_m}!{k_{m + 1}}!}} \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!{k_m}!{k_{m + 1}}!}} \\
= \left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right) \\
\]
Substituting the value, we get
\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + {k_m} + {k_{m + 1}} = n} {\left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]
Hence proved.
Note: The induction hypothesis is proved for $n = 1$ . Then we assume that the statement is true for $n$ terms. Then by using this assumed result, we proved the statement for $n + 1$ terms.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

