Answer

Verified

380.4k+ views

**Hint:**Multinomial theorem is the generalization of binomial theorem. Binomial theorem is given as \[{\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^n}{\left( b \right)^0} + {}^n{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + ..... + {}^n{C_n}{\left( a \right)^0}{\left( b \right)^n}\].

**Complete step by step solution:**

Step 1: We have to state the multinomial theorem. It is the generalization of the binomial theorem. It describes how to expand a power of a sum in terms of powers of the terms in that sum. It states that “For any positive integer $m$ and any non – negative integer $n$ the sum of $m$ terms raised to power $n$ is expanded as

${\left( {{x_1} + {x_2} + ..... + {x_m}} \right)^n} = \sum\limits_{{k_1} + {k_2} + .... + {k_m} = n} {\left( {\begin{array}{*{20}{c}}

n \\

{{k_1},{k_2},....,{k_m}}

\end{array}} \right)} \prod\limits_{t = 1}^m {x_t^{{k_t}}} $

Where $\left( {\begin{array}{*{20}{c}}

n \\

{{k_1},{k_2},....,{k_m}}

\end{array}} \right) = \dfrac{{n!}}{{{k_1}!{k_2}!....{k_m}!}}$ is a multinomial coefficient. “

Here the important thing to keep in mind is that the sum is taken over all combinations of non negative integer indices ${k_1}$ to ${k_m}$ is such that the sum of all ${k_i}$ is $n$ .That is, for each term in the expansion, the exponent of the ${x_i}$ must adds up to $n$ .

When the value of $n = 2$ the multinomial theorem is converted into binomial theorem.

Step 2: Now, we can prove multinomial theorem by using binomial theorem and rule of mathematical induction. The expression holds for $m = 1$ as LHS and RHS are equal.

Now, let us consider that above expression is true for the value of $m$ also.

Now we will prove the expression for $m + 1$ . For that, writing the above expression for $m + 1$ terms, we get

${\left( {{x_1} + {x_2} + ..... + {x_m} + {x_{m + 1}}} \right)^n}$

Separating the last two terms, we get

\[

\Rightarrow {\left( {{x_1} + {x_2} + ..... + {x_{m - 1}} + \left( {{x_m} + {x_{m + 1}}} \right)} \right)^n} \\

\Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}

n \\

{{k_1},{k_2},....,{k_{m - 1}},K}

\end{array}} \right)} \prod\limits_{t = 1}^{m - 1} {x_t^{{k_t}}} \times {\left( {{x_m} + {x_{m + 1}}} \right)^K} \\

\]

Now applying the binomial theorem for the last factor, we get

\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}}

n \\

{{k_1},{k_2},....,{k_{m - 1}},K}

\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}} \right) \times \sum\limits_{{k_m} + {k_{m + 1}} = K} {\left( {\begin{array}{*{20}{c}}

K \\

{{k_m},{k_{m + 1}}}

\end{array}} \right)} \left( {x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]

Step 3: Now in the above step, the value of

\[

\left( {\begin{array}{*{20}{c}}

n \\

{{k_1},{k_2},....,{k_{m - 1}},K}

\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}

K \\

{{k_m},{k_{m + 1}}}

\end{array}} \right) \\

= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!K!}} \times \dfrac{{K!}}{{{k_m}!{k_{m + 1}}!}} \\

= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!{k_m}!{k_{m + 1}}!}} \\

= \left( {\begin{array}{*{20}{c}}

n \\

{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}

\end{array}} \right) \\

\]

Substituting the value, we get

\[ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + {k_m} + {k_{m + 1}} = n} {\left( {\begin{array}{*{20}{c}}

n \\

{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}

\end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)\]

**Hence proved.**

**Note:**The induction hypothesis is proved for $n = 1$ . Then we assume that the statement is true for $n$ terms. Then by using this assumed result, we proved the statement for $n + 1$ terms.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE