
State and explain Ohm’s Law.
Answer
546.9k+ views
Hint: Ohm’s law is one of the most basic and important laws of electric circuits. First we will define or state the Ohm’s Law and then we will formulate each of the components of Ohm’s Law equation. And also discuss the implementation with an example.
Complete answer:
Ohm’s law states that the voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperature remain constant. Or, it states that electric current is directly proportional to its potential difference with the constant temperature.Mathematically, the relationship between resistance, voltage and electric current can be written as Ohm’s as Ohm’s Law equation:
$R = \dfrac{V}{I}$ ,
In the equation, R is Resistance and has units of ohms, with symbol $\Omega $ .
From the above equation, we can formulate both Voltage and Electric current as well:
$V = I.R$ and
$I = \dfrac{V}{R}$
Ohm’s law only holds true if the provided temperature and the other physical factors remain constant. In specific parts, expanding the current raises the temperature. An illustration of this is the fiber of a light, wherein the temperature ascends as the current is increased. For this situation, Ohm's law can't be applied. The light bulb filament violates Ohm’s Law.
Note: Ohm’s law is not applicable for diodes and transistors as they allow the current to flow through in one direction only. For non-straight electrical components with boundaries like capacitance, opposition and so forth the voltage and flow won't be consistent regarding time making it hard to utilize Ohm's law.
Complete answer:
Ohm’s law states that the voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperature remain constant. Or, it states that electric current is directly proportional to its potential difference with the constant temperature.Mathematically, the relationship between resistance, voltage and electric current can be written as Ohm’s as Ohm’s Law equation:
$R = \dfrac{V}{I}$ ,
In the equation, R is Resistance and has units of ohms, with symbol $\Omega $ .
From the above equation, we can formulate both Voltage and Electric current as well:
$V = I.R$ and
$I = \dfrac{V}{R}$
Ohm’s law only holds true if the provided temperature and the other physical factors remain constant. In specific parts, expanding the current raises the temperature. An illustration of this is the fiber of a light, wherein the temperature ascends as the current is increased. For this situation, Ohm's law can't be applied. The light bulb filament violates Ohm’s Law.
Note: Ohm’s law is not applicable for diodes and transistors as they allow the current to flow through in one direction only. For non-straight electrical components with boundaries like capacitance, opposition and so forth the voltage and flow won't be consistent regarding time making it hard to utilize Ohm's law.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

