Square of $ - \dfrac{{13}}{{17}}$ is …………………..
Answer
Verified
479.4k+ views
Hint: To find the square of a real number, we need to multiply the number with itself. Since, ${n^2} = n \times n$ , where n is a real number. Also, the whole square of a negative real number is always positive since a negative real number multiplied with a negative real number is a positive, as per the algebraic rules of multiplication.
Complete step-by-step answer:
According to the question we need to find the value of the square of $ - \dfrac{{13}}{{17}}$. So, to find the value of square of $ - \dfrac{{13}}{{17}}$
Let us assume that $n = - \dfrac{{13}}{{17}}$ ,
Then to find the square of $ - \dfrac{{13}}{{17}}$ , we need to find the value of ${n^2}$ with $n = - \dfrac{{13}}{{17}}$.
Then, ${n^2} = n \times n$will become:
${n^2} = n \times n$
Now, putting $n = - \dfrac{{13}}{{17}}$we will get ${n^2}$ as:
$
\Rightarrow {\left( { - \dfrac{{13}}{{17}}} \right)^2} = \left( { - \dfrac{{13}}{{17}}} \right) \times \left( { - \dfrac{{13}}{{17}}} \right) \\
\Rightarrow {\left( { - \dfrac{{13}}{{17}}} \right)^2} = \dfrac{{169}}{{289}} \\
$
That is, the square of $ - \dfrac{{13}}{{17}}$will be $\dfrac{{169}}{{289}}$ a positive real number. Since as per the algebraic laws of multiplication a negative real number when multiplied with another negative real number gives a positive real number since:
$\left( - \right) \times \left( - \right) = \left( + \right)$
Thus, the sign of the product of a minus with a minus will always be a plus sign.
Therefore, the sign of $\dfrac{{169}}{{289}}$will be plus.
Therefore, Square of $ - \dfrac{{13}}{{17}}$ is ………$\dfrac{{169}}{{289}}$…………..
Note: The cube of the real number is calculated as the number multiplied with itself thrice. If the number is $n,$ then ${n^3} = n \times n \times n$ . The cube of a negative real number will always be negative because :
$
{\left( { - n} \right)^3} = \left( { - n} \right) \times \left( { - n} \right) \times \left( { - n} \right) \\
\Rightarrow {\left( { - n} \right)^3} = \left( {{n^2}} \right)\left( { - n} \right) \\
\Rightarrow {\left( { - n} \right)^3} = - {\left( n \right)^3} \\
$
Note: A positive number when multiplied with a negative number will always result in a negative number.
Also, for a positive real number we do not need to put the plus sign additionally, because no sign before a real number conventionally means the number is positive.
Complete step-by-step answer:
According to the question we need to find the value of the square of $ - \dfrac{{13}}{{17}}$. So, to find the value of square of $ - \dfrac{{13}}{{17}}$
Let us assume that $n = - \dfrac{{13}}{{17}}$ ,
Then to find the square of $ - \dfrac{{13}}{{17}}$ , we need to find the value of ${n^2}$ with $n = - \dfrac{{13}}{{17}}$.
Then, ${n^2} = n \times n$will become:
${n^2} = n \times n$
Now, putting $n = - \dfrac{{13}}{{17}}$we will get ${n^2}$ as:
$
\Rightarrow {\left( { - \dfrac{{13}}{{17}}} \right)^2} = \left( { - \dfrac{{13}}{{17}}} \right) \times \left( { - \dfrac{{13}}{{17}}} \right) \\
\Rightarrow {\left( { - \dfrac{{13}}{{17}}} \right)^2} = \dfrac{{169}}{{289}} \\
$
That is, the square of $ - \dfrac{{13}}{{17}}$will be $\dfrac{{169}}{{289}}$ a positive real number. Since as per the algebraic laws of multiplication a negative real number when multiplied with another negative real number gives a positive real number since:
$\left( - \right) \times \left( - \right) = \left( + \right)$
Thus, the sign of the product of a minus with a minus will always be a plus sign.
Therefore, the sign of $\dfrac{{169}}{{289}}$will be plus.
Therefore, Square of $ - \dfrac{{13}}{{17}}$ is ………$\dfrac{{169}}{{289}}$…………..
Note: The cube of the real number is calculated as the number multiplied with itself thrice. If the number is $n,$ then ${n^3} = n \times n \times n$ . The cube of a negative real number will always be negative because :
$
{\left( { - n} \right)^3} = \left( { - n} \right) \times \left( { - n} \right) \times \left( { - n} \right) \\
\Rightarrow {\left( { - n} \right)^3} = \left( {{n^2}} \right)\left( { - n} \right) \\
\Rightarrow {\left( { - n} \right)^3} = - {\left( n \right)^3} \\
$
Note: A positive number when multiplied with a negative number will always result in a negative number.
Also, for a positive real number we do not need to put the plus sign additionally, because no sign before a real number conventionally means the number is positive.
Recently Updated Pages
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Will Mr Black be at home Saturday evening Yes hell class 8 english CBSE
An electrician sells a room heater for Rs 3220 gaining class 8 maths CBSE
Trending doubts
How is the Lok Sabha more powerful than the Rajya class 8 social science CBSE
Write a letter to your friend telling himher how you class 8 english CBSE
Write the following in HinduArabic numerals XXIX class 8 maths CBSE
Differentiate between the farms in India and the U class 8 social science CBSE
The strategy of Divide and rule was adopted by A Lord class 8 social science CBSE
When will we use have had and had had in the sente class 8 english CBSE